Appendix 1:  Proof That Information Must Be Transferred Faster Than Light

David Bohm described in his 1951 book, Quantum Theory, an experiment much more practical than the one considered by Einstein, Podolsky, and Rosen. This Bohm experiment, together with a similar one involving photons (light quanta) instead of spin-1/2 particles, has been the basis of most of the subsequent experimental and theoretical work pertaining to the faster-than-light question. In this proof of the need in the real physical world for faster-than-light transfer of information, I will use the experiment discussed by Bohm.

But before describing the quantum mechanical experiments I will, in order to make the logical situation completely clear, consider an analogous classical experiment. Suppose an experimenter in a certain space-time region S (for source) has a big box of small objects each of which is either a cube or a sphere, and is either black or white. And suppose he groups them in pairs so that each pair has one cube and one sphere, and has one black object and one white object. Now suppose he takes these pairs, one at a time, and shoots one object of the pair to a faraway laboratory R lying to his right and the other object of that pair to a faraway laboratory L lying to his left. Suppose the experimenters in the two labs R and L know how the pairing was done in S, with each pair containing one black object and one white object, and one cube and one sphere. Suppose, moreover, that each of these two experimenters can freely choose whether to observe the color, black or white, or the shape, cube or sphere, of the object arriving in his lab, but cannot measure both color and shape. However, armed with his knowledge of how the pairing was done, the experimenter in each lab, R and L, can immediately know that if he chooses to measure color then after learning the color of object arriving in his lab he will be able to predict with certainty the color of the object in the same pair that arriveed in other: if he finds “black” he knows that – if the experiments goes as planned – the other faraway experimenter will find :”white” etc. Even though he is predicting on the basis of an observation made at one place what will be found in a faraway place at the same instant of time there is no suggestion of any faster-than-light (FTL) transfer of information: it is just a simple case of correlations of events with a common cause in their common part   .
On the other hand, one thing is clear in this classical case: the outcome of the measurement performed in L does not depend upon which property, color or shape, the faraway experimenter in R decides to observe at essentially the same time; and the outcome of the measurement performed in R does not depend upon which property, color or shape, the experimenter in L decides to measure at essentially the same time. For in this classical case the properties being measured in R and L exist before these free choices are made. Moreover, insofar as these choices of which properties to measure can be considered to be “free choices”, not systematically correlated prior to these choices with the system of objects being measured, a dependence of outcome in one region upon a faraway “free choice” made at essentially the same instant of time would constitute a FTL transfer of information. But if in the real world situation with the same “anti-correlation” relationships as above between the experiments in the two regions, but with spin-1/2 particles instead of classical objects, one cannot impose that  no FTL transfer of information condition without violating some empirically validated predictions of quantum mechanics:  FTL transfers of information of this kind cannot be banned! 
The proof to be given here was inspired by the famous Bell’s theorem. However, Bell’s proof, and the proofs of those who basically followed his lead, depends on a “hidden-variable” assumption that is sometimes euphemistically called “realism”, but which really means that the statistical aspect of quantum mechanics is essentially the same as that of classical statistical mechanics. This places an effective condition that there be an underlying reality that is in some important ways like the objects of classical physics. But this condition runs counter to the conclusions of von Neumann pertaining to for example the essential differences between quantum entropy and classical entropy, and the entry of knowledge into quantum mechanics. 
The present proof of the need for faster-than-light transfer of information differs essentially from Bell’s my placing no conditions at all on any underlying reality, but dealing exclusively with macroscopic measurable properties. This change is achieved essentially by taking Bell’s parameter “lambda” to label the different experiments in a very large set of “similar” experiments, rather than the labels on a very large set of different microscopic states. The logic thereby becomes essentially different, though the mathematics is similar. The experimental arrangements are the familiar ones considered by David Bohm.
In the design of this experiment the physicists are imagining that a certain initial preparation procedure will produce a pair of tiny invisible (spin 1/2) particles in what is called the singlet state. These two particles are sent out in opposite directions to two faraway experimental regions. Each of these experimental regions contains a Stern-Gerlach device that has a preferred axis that is perpendicular to the incoming beam, and two detection devices placed to detect particles deflected “up” or alternatively “down” along this preferred axis Each of these devices will produce a visible signal if the invisible particle reaches it. 

The two detectors in each region are displaced by a fixed amount in opposite directions along this preferred axis. Thus the location of each detector can be specified by an angle Փ that specifies the direction of its displacement away from the common initial line of flight of the two particles. Clearly, the two angles Փ that specify the locations of the two detectors in a region differ by 180 degrees. For example, if one detector is displaced “up” (Փ = 90 degrees} then the other is displaced “down” (Փ = minus 90 degrees).
Under these experimental conditions, quantum theory predicts that, if the detectors are 100% efficient, and if, moreover, the geometry is perfectly arranged, then for each created pair of particles -- which are moving in opposite directions to the two different regions -- exactly one of the two detectors in each region will produce a signal (i.e.,“fire”). The key prediction of quantum theory for this experimental setup is that the fraction F of the pairs for which the detectors that fire in the first and second regions are located at angles Փ1 and Փ2, respectively, is given by the formula F = (1-Cosine(Փ1-Փ2))/4. 

For example, if the locations of the two detectors (one in each ragion) that fire are both specified by the same angle, Փ1 = Փ2, then, because Cosine 0 =1, for each created pair these two specified detectors will never both fire: if one of these two specified detectors fires, then the other will not fire.  If Փ1 is some fixed angle and Փ2 differs from it by 180 degrees then, because Cosine 180 degrees = --1, these two specified detectors will, under the ideal measurement conditions, fire together for half of the created pairs. If Փ1 is some fixed angle and Փ2 differs from it by 90 degrees then these two specified detectors will fire together for ¼ of the pairs. If Փ1 is some fixed angle and Փ2 differs from it by 45 degrees then these two specified detectors will fire together, in a long run, for close to 7.3% of the pairs. If Փ1 is some fixed angle and Փ2 differs from it by 135 degrees then these two specified detectors will fire together, in a long run, for close to 42.7% of the created pairs.
I have listed these particular predictions because they are assumed to be valid in the following proof of the need for near-instantaneous transfer of information between the two far-apart, but nearly simultaneous, experimental space-time regions. These predictions have been massively confirmed empirically.

The second assumption is “localized free choices”. The point here is that physical theories make predictions about experiments performed by experimenters with devices that detect or measure properties of the systems whose properties are being probed by these devices. The theory entails that the various settings of the devices will correspond to probing associated properties of the system being probed.  

Of course, in an actual situation these specified parts of the experimental setup are all parts of a universe that includes also the experimenter and whatever the experimenter uses to actually fix the experimental settings. Such a “choosing” part of the universe could, however, conceivably be linked not only to the associated measuring devise but, say, via the distant past, to other parts of the experiment. Those unsuspected linkages could then be responsible for systematic correlations between the empirical conditions in the two regions -- correlations that are independent of how the experimental setups are chosen. 

In view of the limitless number of ways one could arrange to have the experimental setup determined, and the empirically verified fact that the predictions are found to be valid independently of how the setup is chosen, it is reasonable to assume that the choices of the experimental setups can be arranged so that they are not systematically connected to the specified empirical aspects of the experiment except via these choices of the experimental setup. This is the assumption of “localized free choices.” It is needed to rule out the (remote) possibility that the choice of the setup is significantly and systematically, but independently of its form, entering the dynamics in some way other than as just the localized fixing of the experimental setup.

Suppose, then, we have the two far-apart experimental regions, and in each region an experimenter who can freely choose one or the other of two alternative possible experimental set-ups. Suppose we have, in a certain region called the source region, a certain .mechanical procedure to which we give the name “creation of N individual experimental instances, where N is a large number, say a thousand.  At an appropriate later time the experimenters in the two regions make and implement their “localized free choices” pertaining to which of the two alternative possible experiments will be set up in their respective experimental regions. At a slightly later time each of the two experimenters looks at and sees, in each of the N individual instances, which one of his two detection devices has fired, and then records the angle Փ that labels that detector, thereby recording the outcome that occurs in that individual instance, 

There are altogether two times two, or four, alternative possible experimental setups. Diagram 1 gives, for each of these four alternative possible setups, the number of individual instances, from the full set of 1000, that produce firings in the pair of detectors located at the pair of angles Փ specifies along the left-hand top boundaries of the full diagram.  For example, the four little boxes in the first two row and the first two columns correspond to the case in which experimenter in the left-hand region sets his two detectors at  “up” (Փ1=90 degrees) and “down” (Փ1= minus 90 degrees)., while the experimenter in the right-hand region sets his two detectors also at “up” (Փ2= 90 degrees) and “down” (Փ2= minus 90 degrees). In this case the expected distribution (modulo fluctuations) of the thousand instances is 500 in the box in which Փ1= 90 degrees and Փ2= minus 90 degrees and the other 500 in the box in which Փ1= minus 90 degrees and  Փ2= 90 degrees.

The fluctuations become relatively smaller and smaller as N get larger and larger. So I will, for simplicity, ignore them in this discussion and treat the predictions to be exact for N=1000.

The two experimental regions are arranged to be essentially simultaneous, very far apart, and very tiny relative to their separation. These two regions will be called the “left” and “right” regions. The no-essentially-instantaneous-transfer of information about localized free choices, the “Locality Hypothesis”, is that a change in the localized free choice in either of the two regions can have no effect on the outcomes appearing in the other region. This is essentially the EPR condition that changing the experimenter’s choice of the experiment performed in one region leaves the outcome of whichever experiment is performed in the other region undisturbed. This means, for example, that if the experiment on the right is changed from the case represented by the left-hand two columns to the case represented by the right-hand two columns, then the particular set of 500 instances – from the full set of 1000 -- that are represented by the  500 in the top row second column get shift into the two boxes of the top row in the second two columns.
More generally, a chance in the experiment performed on the right shifts the individual instances – in the set of 1000 individual instanced – horizontally, in the same row; whereas a change in the experiment performed on the left shifts the individual instance vertically. The diagram 1 shows how, by a double application of the “no FTL condition”, a subset of the set of 500 instances occupying box A gets shifted via box B to box C, which must contain at least 427 -73 = 354 of the original 500 instances in A. However, the applying the two changes in the other order, via D, demands that the subset of instances in A that can be in C can be no greater than 250. That is a contradiction. Thus one cannot maintain simultaneously both the general rule of no  FTL transfers of information and four very basic and empirically confirmed predictions of quantum mechanics.
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In Diagram 1, the first and second rows correspond to the two detectors in the first possible set-up in the left-hand region. The third and fourth rows correspond to the two detectors in the second possible set-up in the left-hand region. The four columns correspond in the analogous way to the detectors in the right-hand region. The arrows on the periphery show the directions of the displacements of the detectors associated with the corresponding row or column. 

The argument then goes as follows. Let the pairs (individual instances) in the ordered sequence of the 1000 created pairs be numbered from 1 to 1000. Suppose the actually chosen pair of measurements corresponds to the first two rows and the first two columns in the diagram. This is the experiment in which, in each region, the displacements of the two detectors are “up” and “down”. Under this condition, quantum theory predicts that for some  particular 500-member subset of the full set of 1000 individual instances (created pairs) the outcomes conform to the specifications associated with the little box labeled A. The corresponding 500 member subset of the full set of 1000 positive integers is called Set A. This Set A is particular subset of 500 integers from set {1, 2, …,1000}. The first 4 elements in Set A might be, for example, {1, 3, 4, 7}. 

If the local free choice in the right-hand region had gone the other way, then the prediction of quantum mechanics is that the thousand integers would be distributed in the indicated way among the four little boxes that lie in one of the first two rows and also in one of the second two columns, with the integer showing in each of these four little boxes specifying the number of instances in the subset of the original set of 1000 individual instances that lead to that specified outcome. Each such outcome consists, of course, of a pair of outcomes, one in each region.   

If we now add the Locality Condition, then the demand that the macroscopic situation in the left-hand region be undisturbed by the reversal of the localized free choice made by the experimenter in the (faraway) right-hand region means that the set of 500 integers in Set A must be distributed between the two little boxes standing directly to the right of the little box A. Thus the Set B, consisting of the 427 integers in box B, would be a 427 member subset of the 500 integers in Set A. This assertion is analogous to the EPR condition that changing the experimenter’s choice in one region leaves the physical situation in the other region undisturbed. 

The above conclusions were based on the condition that the choice of experiment on the left was the first option, represented by the top two rows of diagram 1. We now apply the locality hypothesis to conclude that changing the choice on the left must leave the outcomes on the right undisturbed. That means that the 427 elements in the box B must get distributed among the two boxes that lie directly beneath it.  Thus box C must include at least 427-73=354 of the 500 integers in box A.

Repeating the argument, but reversing the order in which the two reversals are made, we conclude, from exactly the same line of reasoning, that box C can contain no more than 250 of the 500 integers box A, Thus the conditions on Set C that arise from the two different orderings of the two reversals are contradictory!

A contradiction is thus established between the consequences of the two alternative ways of ordering these two reversals of localized free choices. Because, due to the locality hypothesis being examined, no information about the choice made in either region is present in the other region, no information pertaining to the order in which the two experiments are performed is available in either region. Hence nothing pertaining to outcomes can depend upon the orderings of these two reversals. 

This argument uses only macroscopic predictions of quantum mechanics -- without any conditions on the micro-structure from whence they came, or to any other assumption about micro-structure -- to demonstrate the logical inconsistency of combining a certain 16 predictions of quantum mechanics with the locality hypothesis that for each of the two experimental regions there is no faster-than-light transfer to the other region of information about localized free choices made in it. 

If one allows violations of the “No FTL transfer of information condition” then the contradiction disappears. In Copenhagen and orthodox von Neumann quantum mechanics the FTL transfer is brought in by the fact that :Nature’s Choice of outcome in one region can depend upon a faraway experimenter’s free choice of which experiment to perform. “Nature’s” global reach gives quantum mechanics a unity that classical mechanics lacks. And it casts great doubt on the Bell-type assumption that the statistical features of quantum mechanics are at some basic level similar to those of classical statistical mechanics, and hence the Bell-type proofs of the nonlocal character of the quantum universe.
