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IX.2. A Semiconductor Device Primer
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1. Carrier Concentrations

The probability of an electron state in the conduction band being filled
is given by the Fermi-Dirac distribution

The transition broadens as the thermal energy E increases, as
illustrated for kBT= 0.005, kBT= 0.026 and kBT= 0.1 eV.
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The density of atoms in a Si or Ge crystal is about 4.1022 atoms/cm3.

Since the minimum carrier density of interest in practical devices is of
order 1010 to 1011 cm-3, very small ocupancy probabilities are quite
important.

In silicon the band gap is 1.12 eV. If the Fermi level is at midgap, the
band-edges will be 0.56 eV above and below EF.

As is apparent from the plot, relatively large deviations from the Fermi
level, i.e. extremely small occupancies, will still yield significant carrier
densities
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The number of occupied electron states Ne is determined by
summing over all available states multiplied by the occupation
probability for each individual state

Since the density of states near the band edge tends to be quite high,
this can be written as an integral

where g(E) is the density of states.

Solution of this integral requires knowledge of the density of states.

Fortuitously, to a good approximation the density of states near the
band edge has a parabolic distribution

As the energy increases beyond the band edge, the distribution will
deviate from the simple parabolic form, but since the probability
function decreases very rapidly, the integral will hardly be affected.

The second obstacle to a simple analytical solution of the integral is
the intractability of integrating over the Fermi distribution.
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If E-EF is at least several times kBT, the Fermi distribution can be
approximated by a Boltzmann distribution

At energies beyond 2.3 kBT of the Fermi level the difference between
the Boltzmann approximation and the Fermi Distribution is <10%,
for energies >4.5 kBT it is less than 1%.

Applying the approximation to the occupancy of hole states, the
probability of a hole state being occupied, i.e. a valence state being
empty is

Since the band gap is of order 1 eV and kBT at room temperature is
0.026 eV, the conditions for the Boltzmann approximation are fulfilled
for excitation across the band gap.
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With these simplifications the number of electrons in the conduction
band in thermal equilibrium is

and the electron concentration

where Nc is the effective density of states at the band edge.

Correspondingly, the hole concentration

The effective densities of states in Si and Ge are

Silicon: Nc = 2.8 x 1019 cm-3 Nv = 1.04 x 1019 cm-3

Germanium: Nc = 1.04 x 1019 cm-3 Nv = 6.0 x 1018 cm-3

In a pure semiconductor each electron in the conduction band
corresponds to a hole in the valence band,

where ni is the carrier concentration intrinsic to an ideal crystal where
the only population mechanism is excitation across the band gap.

Using the above results

which one can solve to obtain EF

If the band structure is symmetrical (Nc=Nv), the intrinsic Fermi level
lies in the middle of the band gap.
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Even rather substantial deviations from a symmetrical band structure
will not affect this result significantly, as Nc /Nv enters logarithmically
and kBT is much smaller than the band gap.

Silicon (Eg = 1.12 eV): ni= 1.45 x 1010 cm-3  at 300K
Germanium (Eg = 0.66 eV): ni= 2.4 x 1013 cm-3    at 300K

For comparison:

The purest semiconductor material that has been grown
is Ge with active impurity levels of about 3.1010 cm-3.

Note that the intrinsic carrier concentration only applies to ideal
crystals, where the only source of mobile carriers is thermal excitation
across the band gap without any additional impurity atoms or crystal
imperfections that would allow other population mechanisms.

A remarkable result is that the product of the electron and hole
concentrations

depends only on the band gap Eg and not on the Fermi level.

• This result, the law of mass action, is very useful in semiconductor
device analysis. It requires only that the Boltzmann approximation
holds, so it is not limited to undoped or ideal crystals.

Qualitatively, it says that if one carrier type exceeds the equilibrium
concentration, recombination will decrease the concentrations of both
electrons and holes to maintain np= ni
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2. Carrier Concentrations in Doped Crystals

The equality
    ne = nh

only holds for pure crystals, where all of the electrons in the
conduction band have been thermally excited from the valence band.

In practical semiconductors the presence of impurities tips the
balance towards either the electrons or holes.

Impurities are an unavoidable byproduct of the crystal growth
process, although special techniques can achieve astounding results
– notably “ultrapure” Ge where the net impurity concentration is about
1010 cm-3 , i.e. a relative concentration of 10-12.

In semiconductor device technology impurities are introduced
intentionally to control the conductivity of the semiconductor.

Let Nd
+ be the concentration of ionized donors and Na

- the
concentration of ionized acceptors.

Overall charge neutrality is preserved, as each ionized dopant
introduces a charged carrier and an oppositely charged atom, but the
net carrier concentration is now

or

Assume that the activation energy of the donors and acceptors is
sufficiently small so that they are fully ionized

Then
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which, using np= ni
2, becomes

If the acceptor concentration NA >> ND  and NA >> ni

i.e. the conductivity is dominated by holes.

Conversely, if the donor concentration ND >> NA  and ND >> ni the
conductivity is dominated by electrons.

If the conductivity is dominated by only one type of carrier, the Fermi
level is easy to determine. For example, if  n >> p, the expression

can be written

yielding

If ND >> NA , then Ec-EF must be small, i.e. the Fermi level lies close
to the conduction band edge.

In reality the impurity levels of common dopants are not close enough
to the band edge for the Boltzmann approximation to hold, so the
calculation must use the Fermi distribution and solve numerically for
EF. Nevertheless, the qualitative conclusions derived here still apply.
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It is often convenient to refer all of these quantities to the intrinsic
level Ei , as it accounts for both Ec and Ev. Then

and the Fermi level in the n-region

Variation of Fermi level with doping and temperature, including
narrowing of the band gap with temperature:

(from Sze)

TkEE
i

TkEE
c

BiFBFc eneNn /)(/)( −−− ==

TkEE
i

TkEE
v

BFiBvF eneNp /)(/)( −−− ==

i

DA
BiF n

NN
TkEE

−−=− log



Introduction to Radiation Detectors and Electronics, 30-Mar-99 Helmuth Spieler
IX.2.a. A Semiconductor Device Primer - Doping and Diodes LBNL

10

3. p-n Junctions

A p-n junction is formed at the interface of a p- and an n-type region.

(from Kittel)

Since the electron concentration in the n-region is greater than in the
p-region, electrons will diffuse into the p-region.

Correspondingly, holes will diffuse into the n-region.

As electrons and holes diffuse across the junction, a space charge
due to the ionized donor and acceptor atoms builds up. The field due
to this space charge imposes a velocity component in the opposite
direction.

The situation is dynamic:
The concentration gradient causes a continuous diffusion current
to flow.
The field due to the space charge drives a drift current in the
opposite direction.
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Equilibrium is attained when the two currents are equal, i.e. the sum
of the diffusion and drift currents is zero.

The net hole current density is

where Dp is the diffusion constant for holes and Ep is the electric field
in the p-region.

To solve this equation we make use of the following relationships:

The hole concentration is

so its derivative

Since the force on a charge qe due to an electric field E is equal to
the negative gradient of the potential energy,

As only the gradient is of interest and Ec , Ev and Ei differ only by a
constant offset, any of these three measures can be used. We’ll use
the intrinsic Fermi level Ei since it applies throughout the sample.

The remaining ingredient is the Einstein relationship, which relates
the mobility to the diffusion constant
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Using these relationships the net hole current becomes

Accordingly, the net electron current

Since, individually, the net hole and electron currents in equilibrium
must be zero, the derivative of the Fermi level

⇒ in thermal equilibrium the Fermi level must be constant
throughout the junction region.

For the Fermi level to be flat, the band structure must adapt, since on
the p-side the Fermi level is near the valence band, whereas on the
n-side it is near the conduction band.

If we assume that the dopants are exclusively donors on the n-side
and acceptors on the p-side, the difference in the respective Fermi
levels is

This corresponds to an electric potential

often referred to as the “built-in” voltage of the junction.
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As either NA or ND increases relative to ni, the respective Fermi level
moves closer to the band edge, increasing the built-in voltage.

With increasing doping levels the built-in voltage approaches the
equivalent potential of the band-gap Eg /qe.

(from Sze)
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The inherent potential distribution in the junction leads to a depletion
region, whose width can be increased by application of an external
potential, i.e. reverse biasing the junction.

(from Kittel)

This was discussed in a previous lecture.

Now the forward bias mode will be treated in more detail.

Complication:

Applying an external bias leads to a condition that deviates from
thermal equilibrium, i.e. the Fermi level is no longer constant
throughout the junction.


