Physics 198

Spring Semester 1999, UC Berkeley

Introduction to Radiation Detectors and Electronics

Helmuth Spieler

Physics Division
Lawrence Berkeley National Laboratory

e-mail: HGSpieler@LBL.gov

Tel.: (510) 486-6643

course notes in pdf format at www-physics.LBL.gov/~spieler

WHY?

Radiation is the only observable in processes that occur on a scale that is either too brief or too small to be observed directly.

Originally developed for atomic, nuclear and elementary particle physics, radiation detectors now are applied in many diverse areas of science, engineering and everyday life.

Progress in science is driven not just by the interplay of theory and experiment, but also by breakthroughs in instrumentation.

Types of Radiation:

- a) charged particleselectrons, protons, atomic nuclei+ many elementary particles
- b) neutral particlesneutrons+ many elementary particles
- c) photons
 light
 x-rays
 gamma rays

Emphasis of this course:

detection of individual particles or photons

The development of detector systems is an interdisciplinary mix of physics and electronics.

For example, understanding of a modern tracking detector in high-energy physics or a medical imaging system requires knowledge of

- solid state physics
- semiconductor device physics
- semiconductor fabrication technology
- low-noise electronics techniques
- analog and digital microelectronics
- high-speed data transmission
- computer-based data acquisition systems

Some examples as introduction....

imaging in astronomy

(thanks to Steve Holland, Engineering Div. LBNL)

- medical imaging –
 positron emission tomography

 (thanks to Bill Moses, Life Sciences Div. LBNL)
- detection of trace elements by x-ray fluorescence

(thanks to Joe Jaklevic, Engineering Div. LBNL)

- tracking detectors in high-energy physics
- failure analysis in silicon integrated circuits

Course Content

- 1. Energy Loss Mechanisms and Spectrum Formation
- 2. Scintillation Detectors

Use a "simple" detector system to explain basic requirements and functional blocks of complete system

3. Semiconductor Detectors (ionization chambers)

signal formation

electronic noise

optimization of signal-to-noise ratio

pulse processing electronics

amplification and pulse shaping amplitude digitization time measurements

- 4. A Semiconductor Device Primer
- 5. Photodiodes
- 6. Gaseous Detectors
- 7. Position Sensitive Detectors
- 8. Detectors for Weakly Ionizing Radiation
- 9. Development of a System Concept
- 10. Why Things Don't Always Work

Open to change as required.

The course does not follow a specific text, but a useful book is

Radiation Detection and Measurement by Glenn F. Knoll, Wiley, 1989,

QC787.C6K56 ISBN 0-471-81504-7

Additional literature will be specified for specific topics.

Course notes and homework problems will be posted on the World Wide Web (www-physics.LBL.gov/~spieler)

Homework will provide basis of pass/fail.

Questions ...

Scheduling?

Office hours?

I'll be available after each lecture,

or contact me and we can meet some other time

e-mail: HGSpieler@LBL.gov

telephone: 486-6643