V.2. Signal Acquisition

- Determine energy deposited in detector
- Detector signal generally a short current pulse

Typical durations

Thin silicon detector	
(10 300 m thick):	100 ps – 30 ns
Thick (~cm) Si or Ge detector:	1 – 10 μs
Proportional chamber (gas):	10 ns – 10 μs
Gas microstrip or microgap	
chamber:	10 – 50 ns
Scintillator + PMT/APD:	100 ps – 10 μs

The total charge Q_s contained in the detector current pulse is $i_s(t)$ proportional to the energy deposited in the detector

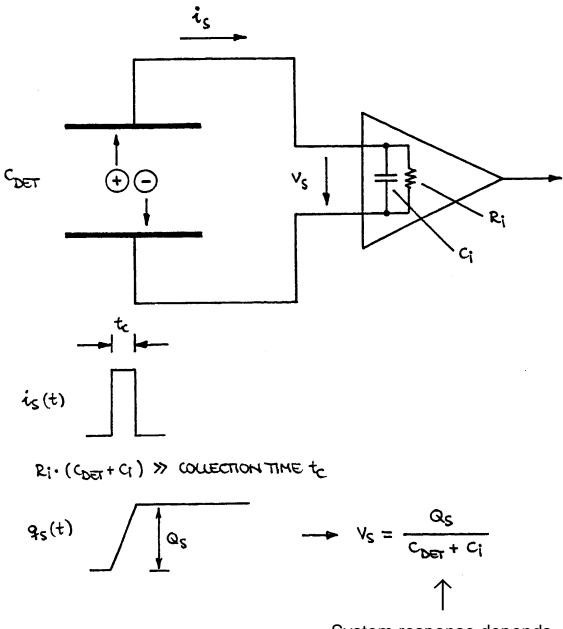
$$E \propto Q_s = \int i_s(t) dt$$

• Necessary to integrate the detector signal current.

Possibilities: 1. Integrate charge on input capacitance

- 2. Use integrating ("charge sensitive") preamplifier
- 3. Amplify current pulse and use integrating ("charge sensing") ADC

Signal integration on Input Capacitance



System response depends on detector capacitance !

Detector capacitance may vary within a system or change with bias voltage (partially depleted semiconductor diode).

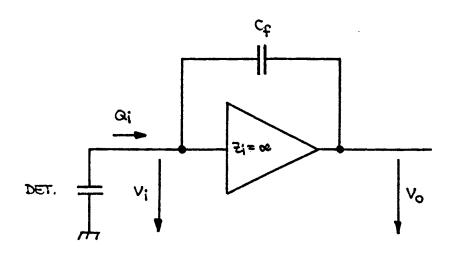
 \Rightarrow make system whose gain (dV_{out}/dQ_s) is independent of detector capacitance.

Active Integrator ("charge-sensitive amplifier")

Start with inverting voltage amplifier

Voltage gain $dV_o/dV_i = -A \implies v_o = -A v_i$

Input impedance = ∞ (i.e. no signal current flows into amplifier input) Connect feedback capacitor C_f between output and input.



Voltage difference across C_f : $v_f = (A+1) v_i$

$$Q_f = C_f v_f = C_f (A+1) v_i$$

$$\Rightarrow$$
 Charge deposited on C_f :

$$Q_i = Q_f$$
 (since $Z_i = \infty$)

 \Rightarrow Effective input capacitance

$$C_i = \frac{Q_i}{v_i} = C_f (A+1)$$

("dynamic" input capacitance)

Gain

$$A_Q = \frac{dV_o}{dQ_i} = \frac{A \cdot v_i}{C_i \cdot v_i} = \frac{A}{C_i} = \frac{A}{A+1} \cdot \frac{1}{C_f} \approx \frac{1}{C_f} \quad (A \gg 1)$$

 Q_i is the charge flowing into the preamplifier

but some charge remains on C_{det} .

What fraction of the signal charge is measured?

$$\frac{Q_i}{Q_s} = \frac{C_i v_i}{Q_{det} + Q_i} = \frac{C_i}{Q_s} \cdot \frac{Q_s}{C_i + C_{det}}$$
$$= \frac{1}{1 + \frac{C_{det}}{C_i}} \approx 1 \text{ (if } C_i >> C_{det} \text{)}$$

Example:

$$A = 10^{3}$$

$$C_{f} = 1 \text{ pF} \qquad \implies C_{i} = 1 \text{ nF}$$

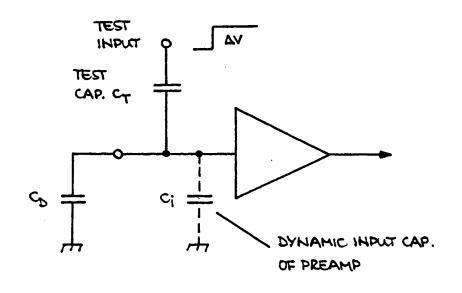
 $C_{det} = 10 \text{ pF}$: $Q_i/Q_s = 0.99$ $C_{det} = 500 \text{ pF}$: $Q_i/Q_s = 0.67$

Input coupling capacitor must be $>>C_i$ for high Note: charge transfer efficiency.

Calibration

Inject specific quantity of charge - measure system response

Use voltage pulse (can be measured conveniently with oscilloscope)



$$C_i >> C_T$$

Voltage step applied to test input develops over C_T .

$$Q_T = \Delta V^{\cdot} C_T$$

 \Rightarrow

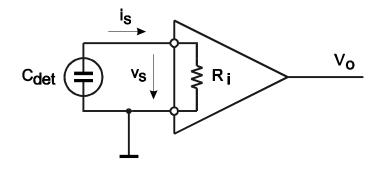
Accurate expression:

$$Q_T = \frac{C_T}{1 + \frac{C_T}{C_i}} \cdot \Delta V \approx C_T \left(1 - \frac{C_T}{C_i} \right) \Delta V$$

Typically: $C_T/C_i = 10^{-3} - 10^{-4}$

Summary of Amplifier Types

1. Simple Amplifiers



Output voltage V_o = voltage gain $A_v \times$ input voltage v_s .

Operating mode depends on charge collection time t_{coll} and the input time constant R_iC_{det} :

a) $R_i C_{det} \ll t_{coll}$ detector capacitance discharges rapidly

 $\Rightarrow V_o \propto i_s(t)$

current sensitive amplifier

b) $R_i C_{det} >> t_{coll}$ detector capacitance discharges slowly

 $\Rightarrow \quad V_o \propto \int i_s(t) dt$

voltage sensitive amplifier

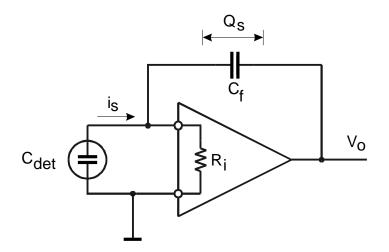
In both cases the ouput signal voltage is determined directly by the input voltage.

2. Feedback Amplifiers

Basic amplifier as used above.

High input resistance: $R_i C_{det} >> t_{coll}$

Add feedback capacitance C_f



Signal current is is integrated on feedback capacitor Cf :

 $V_o \propto Q_s / C_f$

Amplifier output directly determined by signal charge, insensitive to detector capacitance

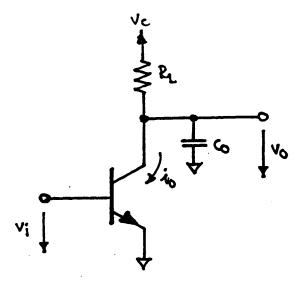
 \Rightarrow charge-sensitive amplifier

Realistic Charge-Sensitive Preamplifiers

The preceding discussion assumed idealized amplifiers with infinite speed.

- How do "real" amplifiers affect charge response?
- How does the detector affect amplifier response?

A Simple Amplifier



Voltage gain:

$$A_V = \frac{dv_o}{dv_i} = \frac{di_o}{dv_i} \cdot Z_L \equiv g_m Z_L$$

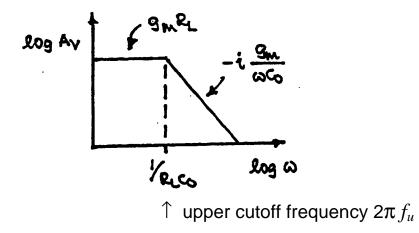
 $g_m \equiv \text{transconductance}$

$$Z_{L} = R_{L} / / C_{o}$$

$$\frac{1}{Z_{L}} = \frac{1}{R_{L}} + i\omega C_{o} \implies A_{V} = g_{m} \left(\frac{1}{R_{L}} + i\omega C_{o}\right)^{-1}$$

$$\uparrow \qquad \uparrow$$

low freq. high freq.



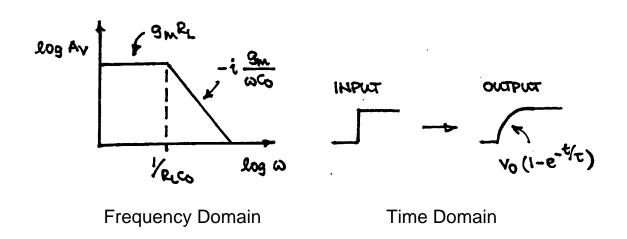
Introduction to Radiation Detectors and Electronics V.2. Signal Acquisition

Copyright © 1998 by Helmuth Spieler

Pulse Response of the Simple Amplifier

A voltage step $v_i(t)$ at the input causes a current step $i_o(t)$ at the output of the transistor.

For the output voltage to change, the stray capacitance C_a must first charge up.



Note that τ is the inverse upper cutoff frequency $1/(2\pi f_u)$

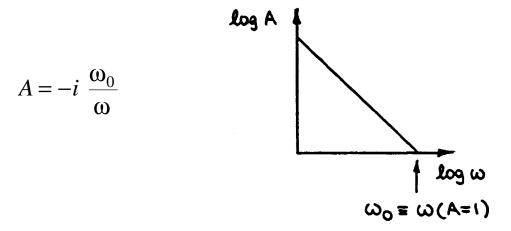
 \Rightarrow The output voltage changes with a time constant $\tau = R_L C_o$

Input Impedance of a Charge-Sensitive Amplifier

Input impedance

$$Z_i = \frac{Z_f}{A+1} \approx \frac{Z_f}{A} \quad (A \gg 1)$$

Amplifier gain vs. frequency



Gain-Bandwidth Product

Feedback Impedance

$$Z_f = -i \ \frac{1}{\omega \ C_f}$$

> Input Impedance

$$Z_{i} = -\frac{i}{\omega C_{f}} \cdot \frac{1}{-i\frac{\omega}{\omega_{0}}}$$
$$Z_{i} = \frac{1}{\omega_{0}C_{f}}$$

 \Rightarrow

Imaginary component vanishes

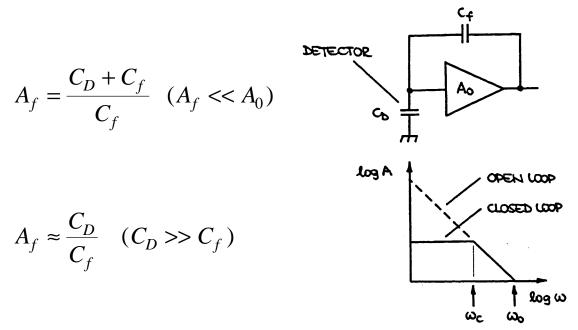
Resistance: $Z_i \rightarrow R_i$

Introduction to Radiation Detectors and Electronics V.2. Signal Acquisition

Copyright © 1998 by Helmuth Spieler

Time Response of a Charge-Sensitive Amplifier

Closed Loop Gain



Closed Loop Bandwidth

$$\omega_C A_f = \omega_0$$

Response Time

$$\tau_{amp} = \frac{1}{\omega_C} = C_D \ \frac{1}{\omega_0 C_f}$$

Alternative Picture: Input Time Constant

$$\tau_i = R_i C_D$$

$$\tau_i = \frac{1}{\omega_0 C_f} \cdot C_D = \tau_{amp}$$

Same result as from conventional feedback theory.