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History of the universe You are here

LHC probes physicsLHC probes physics
relevant to the universerelevant to the universe

at age 10at age 10--1414 sec.sec.

�NOW (12.7 Billion years)

�Stars form (1 Billion years)

�Nuclei Form (180 seconds)

�Atoms Form (300 000 years)

�Protons and Neutrons Form (10-10 sec)

�Quarks Differentiate (10-34 sec ?)

CMB Structure Imprinted

Inflation? <1016 GeV
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IInnffllaattiioonn

oo AAtt tt ~~1100--3388 ss AABBBB,, tthhee uunniivveerrssee uunnddeerrggooeess aa pphhaassee ttrraannssiittiioonn ccaauussiinngg aann
eexxpplloossiivvee 11003300--ffoolldd eexxppoonneennttiiaall eexxppaannssiioonn

oo LLeeaavveess iittss iimmpprriinntt aass iinnffllaattiioonnaarryy ggrraavviittyy wwaavveess

IInnffllaattiioonn pprreeddiiccttss

oo CCoossmmiicc MMiiccrroowwaavvee BBaacckkggrroouunndd rraaddiiaattiioonn
oo CCMMBB iiss iissoottrrooppiicc
oo EExxppoonneennttiiaall eexxppaannssiioonn llooccaallllyy ffllaatttteennss ssppaattiiaall ccuurrvvaattuurree ttoo hhiigghh pprreecciissiioonn..

•• UUnniivveerrssee iiss ““ffllaatt”” ((EEuucclliiddiiaann ggeeoommeettrryy))
oo DDeennssiittyy ppeerrttuurrbbaattiioonnss,, wwhhiicchh wwiillll eevveennttuuaallllyy ccoollllaappssee uunnddeerr tthhee ppuullll ooff ggrraavviittyy ttoo

pprroodduuccee ggaallaaxxiieess,, ssttaarrss,,....
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CMB has a near perfect black body spectrum (T= 2.7K)
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Map Temperature of Sky:

Data from WMAP

Temperature anisotropy ~10-5

Multipole expansion of spatial distribution

Determine spectrum of angular scales

Dominant angular scale ~1 degree

Universe is flat
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Multipole expansion of spatial distribution – determine angular scales

Angular structure depends on
cosmological parameters

For example, geometry:
universe is flat

l∆Θ ≈angular resolution 180/
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• CMB measurements provide
constraints on fundamental
cosmological parameters

• CMB spatial distribution
largely unaffected since 300k
yrs after Big Bang

• Supernova and CMB data
together give best constraints
on mass and energy density
of the universe
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Matt Dobbs <MADobbs@lbl.gov> CMB Cosmology QuarkNet July 25, 2003 40

Measuring the CMB: 1. From the GroundMeasuring the CMB: 1. From the Ground
TODAY:
The VIPER Telescope at the South Pole
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ACBAR focal plane array installed in Viper telescope
(Holzapfel et al.)
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Layout of detector array and
cryogenics
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Matt Dobbs <MADobbs@lbl.gov> CMB Cosmology QuarkNet July 25, 2003 41

One of the primary challenges
for CMB observations is trying t
see the tiny 2.7 K sky temperat
while you’re looking through a
warm (300 K) atmosphere, with
and other changing conditions.

This has driven scientists to put
telescopes as high as possible—
on board high altitude balloons,
U2 spy airplanes, and on satellit

Measuring the CMB: 2. From BalloonsMeasuring the CMB: 2. From Balloons
The Maxima Balloon Payload.

The Boomerang Balloon at the S
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Measuring the CMB from Balloons

Maxima (P. Richards et al.)

Balloon-based experiment (launched in Texas)

Measure angular distribution of
temperature variations

Gondola prior to launch

Measurements at ~40 km altitude
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Detector array in focal plane

Bolometers absorb radiation directly and translate
temperature rise into electrical signal.

Array of 16 horn antennas coupled to individual
bolometers at 100 mK.

Angular resolution: 10’ FWHM

Frequency bands: 150, 240 and 410 GHz
(~30 – 60 GHz BW)

Sensitivity: ~100 mK/ Hz
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Matt Dobbs <MADobbs@lbl.gov> CMB Cosmology QuarkNet July 25, 2003 42

Measuring the CMB: 3. with SatellitesMeasuring the CMB: 3. with Satellites
The Wilkinson Microwave Anisotropy Sat
was launched in June 2002, producing th
detailed MAP of the sky in the Microwav

A further advantage of satellites
full sky coverage.
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Some Next Generation Experiments

APEX-SZ UCB, LBNL, MPIfR

South Pole Telescope Univ. Chicago, UCB, LBNL, CWRU, CfA

PolarBear UCB, LBNL

Berkeley Group

John Clarke (LBNL,UCB)
William Holzapfel (UCB)
Adrian Lee (LBNL,UCB)
Paul Richards (UCB)
Helmuth Spieler (LBNL)
Martin White (LBNL,UCB)

John Joseph (Eng. Div. LBNL)
Chinh Vu (Eng. Div. LBNL)

Sherry Cho (UCB)
Matt Dobbs (LBNL)
Nils Halverson (UCB)
Huan Tran (UCB)

+ 10 graduate students



APEX-SZ

Measure density of galaxy
clusters vs. redshift
(distance)

Cluster counts together with
redshifts determine cluster
dN/dz

constrain dark energy
equation of state, w
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Growth of structure depends on cosmology: Constrain matter density Ωm

Complementary to DEEP & SNAP

different systematics

different correlations

SNAP

SZ

100 deg2 SZ survey
> 20,000 clusters

matter density

95% C.L.

DEEP
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Measurement Technique: Sunyaev-Zel’dovich Effect

Inverse Compton scattering
Hot gas bound to clusters of galaxies scatters CMB

⇒ distorts black-body spectrum

⇒ measure motion of galaxies relative to CMB rest frame

Difference between SZ and black body distributions

BIMA

Diabolo

SuZIE
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SZ effect independent of redshift

(Holzapfel et al.)

In contrast to x-rays (insets), SZ surface brightness is independent of redshift, so clusters can be seen at
any distance.

However, x-ray data needed to determine temperature.

Emerging technique that requires greatly improved arrays.
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Springel, White, Hernquist astro-ph/0008133

Simulation of 1 deg2 of SZ sky

Springel, White, Hernquist astro-ph/0008133

Simulation of 1 deg2 of SZ sky

Galaxy cluster searchesGalaxy cluster searches
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Atacama Pathfinder Experiment (APEX)

Telescope

• Located at 16,500 feet in the Chilean
Andes.

• 12m on-axis ALMA prototype
• 45” resolution at 150 GHz
• 30’ field-of-view
• Telescope operated by

MPIfR/ESO/Onsala.
• Telescope installed in Chile

Berkeley SZ receiver
• 300 pixel focal plane array
• funded by NSF astronomy
• 25% of observing time
• First light Fall 2004
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South Pole Telescope

• ~1000 pixel focal plane (multiplexed)
• 10m, off-axis design
• 1.3” resolution
• 1 deg. Field of view
• 100% time SZ observations
• Best mm-wave site
• First light 2006
• Funded by NSF Polar Programs

(Chicago, Berkeley, Case Western,
SAO)

APEX and SPT are complementary:
APEX will be operational 2-3 years before SPT, but SPT will have ~5x faster
cluster finding rate.
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PolarBear

Polarization experiment: detect imprint of gravity waves from Big Bang
(“smoking gun” of inflation)

E-mode polarization detected (Carlstrom, et al.):

Gravity waves generate B-modes: Polarization field has net curl.

5 degrees
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B-modes are also generated by weak lensing of E-mode polarization
Gravity wave signature and lensing have different angular scales
Requires 3m reflector to provide angular resolution.
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~100 µK RMS

~4 µK RMS

=300 nK RMS

1 degree

Temperature

E-modes

B-modes
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PolarBear Site: White Mountain, CA (~4000 m)

• atmospheric emission
is nearly unpolarized.

• large sky coverage
for primordial gravity
waves

• sufficient resolution to
measure and subtract
out gravitational lensing signal.

• staged deployment – 300 elements, upgrade to ~3000 pixels
• multi-frequency polarization sensitive antenna coupled toTransition Edge Sensor

bolometers
• testing facility for future satellite technologies, systematics, and foreground

measurements
• first light 2005(?)

– All of these experiments require major step-up in sensitivity
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Measurement Requirements

• 2.7 K black body spectrum: peaks at 150 GHz
• Antenna delivers power proportional to CMB temperature
• 2.7 K signal power: ~pW
• Next generation experiments aiming for 300 nK resolution
• Bolometers at photon shot noise limit
• 100 - 1000 increase in sensitivity needed

– increase observing time
– large bolometer arrays
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Thermal Detectors

Basic configuration:

Assume thermal equilibrium:
If all absorbed energy E is converted into phonons, the temperature of the sample will increase by

where C the heat capacity of the sample (specific heat x mass).

At room temperature the specific heat of Si is 0.7 J/gK, so

E= 1 keV, m= 1 g ⇒ ∆T= 2.10-16 K,

which isn’t practical.

C
ET =∆
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What can be done?

a) reduce mass

b) lower temperature to reduce heat capacity “freeze out” any electron contribution, so
phonon excitation dominates.

Debye model of heat capacity:
3

T
C  ∝  Θ 

Example: m= 15 µg

T= 0.1 K

Si ⇒ C= 4.10-15 J/K

E= 1 keV ⇒ ∆T= 0.04 K



Next-Generation CMB Experiments and Technologyy Helmuth Spieler
2003 ICFA Instrumentation School, Itacuruçá, Brazil LBNL

29

How to measure the temperature rise?

Couple thermistor to sample and measure resistance
change

Thermistors made of very pure semiconductors (Ge, Si) can
exhibit responsivities of order 1 V/K, so a 40 mK change in
temperature would yield a signal of 40 mV. (Sadoulet, et al.)

Superconducting Transition Edge Sensors (TES)

Utilize abrupt change in resistance in transition from
superconducting to normal state

The ultimate detection limit is determined by the
thermodynamic noise of the sensor and the thermal
noise associated with its resistance.

24 4N S SP kT b kT Gb= +

b = bandwidth
(Jan Gildemeister)
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Worldwide activity on cryogenic detectors has led to impressive results, but devices have been

Hand-crafted

Critical to operate

⇒ only small arrays have been used

Recent developments have changed this picture:

1. Voltage-Biased Transition Edge Sensors

⇒ stable and predictable response

2. TES can be monolithically integrated using fabrication techniques developed for Si integrated circuits
and micromachining.

⇒ fabricate large arrays with uniform characteristics
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Voltage-Biased Transition-Edge Sensors

Required power is of order pW, i.e. voltage of order µV
current of order µA

Simplest to bias device with a constant current and measure change in voltage

Problem: power dissipated in sensor 2P I R=

Increasing R ⇒ Increasing P ⇒ Increasing R ⇒ Increasing P

⇒ thermal runaway

When biased with a constant voltage
2VP

R
=

Increasing R ⇒ Decreasing P ⇒ Decreasing T ⇒ Decreasing R

⇒ negative feedback

stabilizes operating point
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In the transition regime the power is
roughly independent of bias voltage.

Electrothermal negative feedback keeps
total power in bolometer constant.

Change in power due to absorbed
radiation must be balanced by change in
bias power

0
0

( )Q V I t dt
∞

= − ∫
Signal current proportional to signal
power.

⇒ calibration is determined only by
magnitude of bias voltage.

from Gildemeister
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Important constraint:

Since sensor resistance of order 0.1 – 1 Ω, the total external resistance, i.e.

• Internal resistance of voltage source

• Input resistance of current measuring device

must be much smaller to maintain voltage-biased operation, i.e. < 0.01 – 0.1 Ω !
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SQUIDs are good match for TES readout

• low temperature device

• very low noise possible
(10 mK noise temperature compared to sensor temperature of 100 – 300 mK)

• low input impedance (input inductance ~100 pH)

• adequate gain to drive room-temperature amplifier without significant noise degradation

However,

• Input signal may not exceed 1/4 flux quantum
(output periodic in Φ0 )

• Feedback loop required to lock flux at proper operating point (flux locked loop)
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4.SQUIDs

Superconducting Quantum Interference Devices

Two Josephson junctions connected in parallel to form superconducting ring:

Two key ingredients:

1. Phase between two tunneling
currents in Josephson junction is
determined by current.

2. Magnetic flux in superconducting
loop is quantized:

-7 2
0

-15

2.0678 10 gauss cm

2.0678 10 Vs

c
e

π
∆Φ = = ⋅

= ⋅

�

SQUID is biased by current I.
Input signal is magnetic flux due to current through coupling coil Li.
Output is voltage V .
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Current-Voltage Characteristics

Output voltage V vs. flux Φ/Φ0 as bias current IB
is increased
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However,

• Input signal may not exceed ¼ flux quantum
(output periodic in Φ0 )

• Feedback loop required to lock flux at proper operating point (flux locked loop)

Feedback circuit limits frequency response.

H. Spieler, Frequency Domain Multiplexing for Large-Scale Bolometer Arrays, in Proceedings Far-IR,
Sub-mm & mm Detector Technology Workshop, Wolf J., Farhoomand J. and McCreight C.R. (eds.),
NASA/CP-211408, 2002 and LBNL-49993

Vout
L

L

f

iINPUT
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Typical Parameters

Operating Temprature: 0 – 5 K (also high TC SQUIDs)

Flux Sensitivity: ΦV =150 µV/Φ0

Flux Noise: 1 to 10 µΦ0

SQUID Inductance: 100 – 500 pH

Input Inductance: 10 nH to 1 µH

Series SQUID Arrays

Array of SQUIDs with
input coils in series and
outputs connected in series.

We use arrays of 100 series-connected SQUIDs (fabricated by NIST).

Sensitivity: i

dV
M

d
= ≈

Φ
output voltage 500
input current
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Monolithic Fabrication of TES Arrays
(Jan Gildemeister et al.)

TES sensor can be fabricated with thin film deposition.

Signal is captured by metallic grid on Si-nitride beams
(7 µm wide x 1 thick)

Sensor in middle of grid:
Ti (500Å) – Al(400Å) – Ti(500Å) – Al(1000Å)
(dot in middle of lower figure)

Prototype 32 x 32 Si2N3 array:

Grid made from film of low-stress
Si-nitride etched to form beams.

Connected to frame at 4 points
(arrows)

pixel:
• high thermal resistance 1.5 x 1.5 mm2

• connections to readout
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Cross Section of Pixel

Etch detail
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Transition temperature is adjusted by choice of thickness and materials in sensor
sandwich:

1. Transition temperature depends on film
thickness

2. Thin adjacent layers interact
(“Proximity Effect”)

Film Thickness [Å]
Jan Gildemeister
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Measured Noise

Jan Gildemeister
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APEX-SZ Spiderweb Bolometers
(Jared Mehl)

3 mm
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OLD NEW

16-sensor MAXIMA Array

15 cm

300-element APEX-SZ Array
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Polarization Receiver
Integrate Antennas + Bandpass Filters + Sensors
(Mike Myers)

Antenna-coupled bolometers

• Monolithically integrate crossed-
dipole antennas + bandpass filters
with bolometer

• Connect bolometer through
transmission line

• Bolometer is load resistor
• Antenna bandwidth allows multiple

frequency bands
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Sensors at 0.5 K: µW Power Budget

• Arrays with >1000 pixels in development
• Heat leak through wires to 4K stage too large

• Frequency-Domain Multiplexing
– AC bias each bolometer at different frequency (500 kHz - 1 MHz)
– signal modulates bolometer current
– signal in sidebands associated with each carrier frequency
– each bolometer signal at unique frequency

• ~30 bolometers per wire-pair
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Modulation Basics

If a sinusoidal current 0 ωsinI t is amplitude modulated by a second sine wave sinm mI tω

0

0

( ) ( sin )sin

( ) sin sin sin
m m

m m

I t I I t t

I t I t I t t

ω ω
ω ω ω

= +
= +

Using the trigonometric identity 2sin sin cos( ) cos( )α β α β α β= − − + this can be rewritten

0( ) sin cos( ) cos( )
2 2
m m

m m

I I
I t I t t t t tω ω ω ω ω= + − − +

The modulation frequency is translated into two sideband frequencies ( )mt tω ω+ and
( )mt tω ω− symmetrically positioned above and below the carrier frequency ω.

All of the information contained in the modulation signal appears in the sidebands; the carrier does not
carry any information whatsoever.

The power contained in the sidebands is equal to the modulation power, distributed equally between
both sidebands.
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Frequency-Domain Multiplexer

R( fV
R R R R

C C C C

L L L L

Bnn

S S S S

1 2 3 n

1 2 3 n

Σ )

VoutLi'

• All bias frequencies combined on common bias line.
• Tuned circuits route bias frequencies to appropriate bolometer
• Individual currents summed at low-impedance SQUID amplifier
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1. The sensors are AC biased by the frequency generator at the left of the figure. The AC
drive signal is applied as a comb spectrum ω= =∑ ∑( ) ( ) cos( )n n nV t V f V t . The bias
resistance RB is much smaller than the sensor resistance RS to ensure voltage-biased
operation.

2. The individual series resonant circuits LnCn are set to the component frequencies of the
drive spectrum, so that each leg of the sensor array is driven predominantly by only one
frequency fn.

3. Signal power absorbed by the sensor modulates the current flow through the tuned
circuit, translating a signal spectrum ∆fs into sidebands fn ± ∆fs above and below the
corresponding carrier frequency.

4. The sum of all sensor currents is sensed by an output current amplifier.

Its input impedance must be much smaller than the sensor resistance over the whole
range of bias frequencies, again to ensure voltage-biased operation.

5. A bank of frequency-selective demodulators extracts the individual signals from the
composite signal.
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Demodulation

The same carrier signal that biases the sensor is used to translate the sideband information to
baseband.

The mixer acts analogously to a modulator, where the input signal modulates the carrier, forming both
sum and difference frequencies.

In the difference spectrum the sidebands at ± ∆n Sf f are translated to a frequency band
0− ± ∆ = ± ∆( )n n S Sf f f f .

A post-detection low-pass filter attenuates all higher frequencies and determines the ultimate signal and
noise bandwidth.

OSC

MIXER LPF

SENSOR BIAS

COMPOSITE
SIGNAL INPUT

SIGNAL
OUTPUT
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Frequency-Domain MUX Demonstrated with X-
Ray Micro-Calorimeters

LLNL/UCB/LBNL collaboration
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Energy resolution of 60 eV FWHM unaffected by multiplexer.
MUXing ⇒ increase active area, overall rate capability
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Summary: Breakthrough in Cryogenic Detectors

• Sensitivity approaching quantum level at mm wavelengths

• Voltage-biased superconducting transition edge sensors

⇒ stable operation
predictable response

• Sensors can be fabricated using monolithic technology developed for Si integrated
circuits, micro-mechanics

⇒ economical fabrication of large sensor arrays

• Challenge: Readout
(multiplexing of many channels)
prototypes tested, but much work to do

• great opportunities for students + post-docs!
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Exciting Times in
Physics!

• Dark Matter and Dark
Energy comprise 95%
of the universe.

• We don’t know what
the dark matter is, nor
do we have any
credible explanation of
dark energy.

• All of the physics and
chemistry of the past
~400 years has been directed at understanding only 5% of the universe!

• We may find the “new physics” by looking 12.7 billion years into the past.

• One thing is clear - new imaging detectors will play a key role in solving these
mysteries.
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