III. Signal Processing Part 2

 Digitization of Pulse Height and Time – Analog to Digital Conversion 	2
Resolution Differential non-linearity	3 7
Integral non-linearity Conversion time	8 10
Count-rate performance	10
Stability	12
Analog-to-digital conversion techniques	13
Time digitizers	18
2. Digital Signal Processing	20

1. Digitization of Pulse Height and Time – Analog to Digital Conversion

For data storage and subsequent analysis the analog signal at the shaper output must be digitized.

Important parameters for ADCs used in detector systems:

- 1. Resolution The "granularity" of the digitized output
- 2. Differential Non-Linearity How uniform are the digitization increments?
- 3. Integral Non-Linearity Is the digital output proportional to the analog input?
- 4. Conversion Time How much time is required to convert an analog signal to a digital output?
- 5. Count-Rate Performance

How quickly can a new conversion commence after completion of a prior one without introducing deleterious artifacts?

6. Stability

Do the conversion parameters change with time?

Instrumentation ADCs used in industrial data acquisition and control systems share most of these requirements. However, detector systems place greater emphasis on differential non-linearity and count-rate performance. The latter is important, as detector signals often occur randomly, in contrast to measurement systems where signals are sampled at regular intervals. 1. Resolution

Digitization incurs approximation, as a continuous signal distribution is transformed into a discrete set of values. To reduce the additional errors (noise) introduced by digitization, the discrete digital steps must correspond to a sufficiently small analog increment.

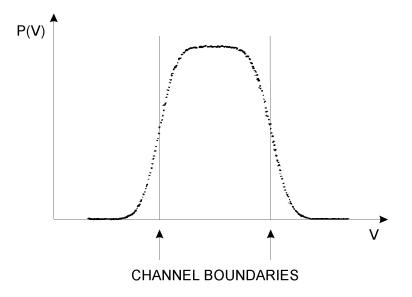
Simplistic assumption:

Resolution is defined by the number of output bits, e.g.

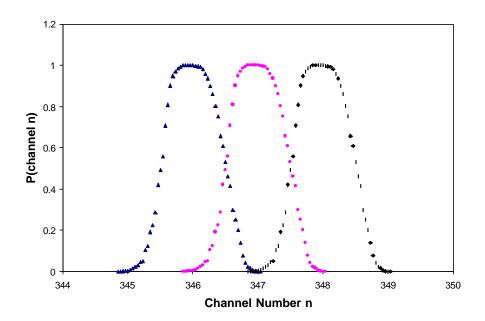
13 bits **(P)**
$$\frac{\Delta V}{V} = \frac{1}{8192} = 1.2 \cdot 10^{-4}$$

True Measure: Channel Profile

Plot probability vs. pulse amplitude that a pulse height corresponding to a specific output bin is actually converted to that address.

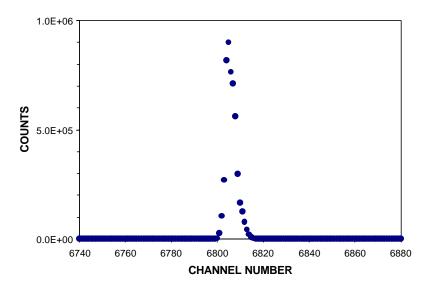

Measurement accuracy:

- If all counts of a peak fall in one bin, the resolution is ΔV .
- If the counts are distributed over several (>4 or 5) bins, peak fitting can yield a resolution of $10^{-1} - 10^{-2} \Delta V$, *if the distribution is known and reproducible* (not necessarily a valid assumption for an ADC).

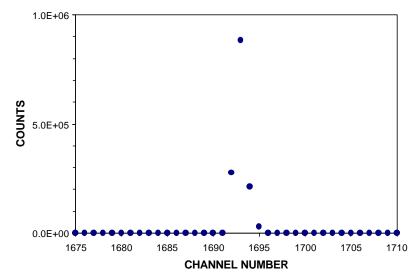

In reality, the channel profile is not rectangular as sketched above.

Electronic noise in the threshold discrimination process that determines the channel boundaries "smears" the transition from one bin to the next.

Measured channel profile (13 bit ADC)

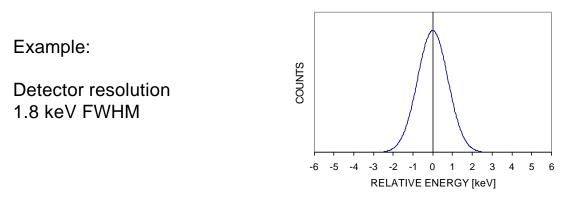

The profiles of adjacent channels overlap

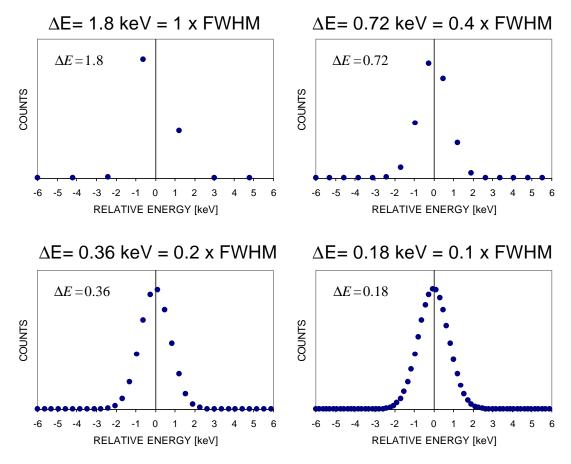
Channel profile can be checked quickly by applying the output of a precision pulser to the ADC.


If the pulser output has very low noise, i.e. the amplitude jitter is much smaller than the voltage increment corresponding to one ADC channel or bin, all pulses will be converted to a single channel, with only a small fraction appearing in the neighbor channels.

Example of an ADC whose digital resolution is greater than its analog resolution:

8192 ch conversion range (13 bits)


2048 ch conversion range (11 bits)


2K range provides maximum resolution – higher ranges superfluous.

Front-End Electronics and Signal Processing – III. Signal Processing 2 2002 ICFA Instrumentation School, Morelia, Mexico Helmuth Spieler LBNL

How much ADC Resolution is Required?

Digitized spectra for various ADC resolutions (bin widths) ΔE :

Fitting can determine centroid position to fraction of bin width even with coarse digitization, if the line shape is known.

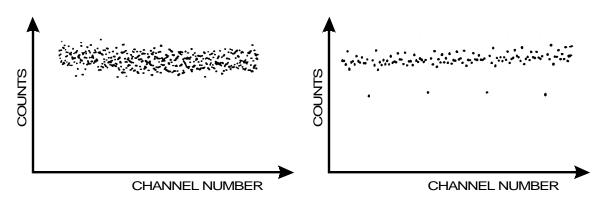
Five digitizing channels within a linewidth (FWHM) allow robust peak fitting and centroid finding, even for imperfectly known line shapes and overlapping peaks.

2. Differential Non-Linearity

Differential non-linearity is a measure of the inequality of channel profiles over the range of the ADC.

Depending on the nature of the distribution, either a peak or an rms specification may be appropriate.

or

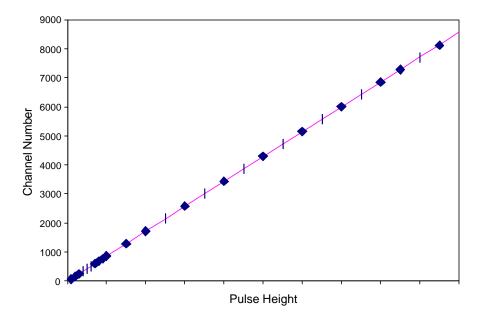

$$DNL = \max\left\{\frac{\Delta V(i)}{\langle \Delta V \rangle} - 1\right\}$$
$$DNL = \text{r.m.s.}\left\{\frac{\Delta V(i)}{\langle \Delta V \rangle} - 1\right\}$$

where $\langle \Delta V \rangle$ is the average channel width and $\Delta V(i)$ is the width of an individual channel.

Differential non-linearity of $< \pm 1\%$ max. is typical, but state-of-the-art ADCs can achieve 10^{-3} rms, i.e. the variation is comparable to the statistical fluctuation for 10^{6} random counts.

Note: Instrumentation ADCs are often specified with an accuracy of ± 0.5 LSB (least significant bit), so the differential non-linearity may be 50% or more.

Typical differential non-linearity patterns ("white" input spectrum).



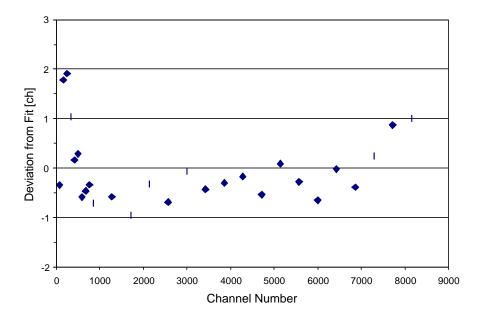
An ideal ADC would show an equal number of counts in each bin.

The spectrum to the left shows a random pattern, but note the multiple periodicities visible in the right hand spectrum.

3. Integral Non-Linearity

Integral non-linearity measures the deviation from proportionality of the measured amplitude to the input signal level.

The dots are measured values and the line is a fit to the data. This plot is not very useful if the deviations from linearity are small. Plotting the deviations of the measured points from the fit yields:



Front-End Electronics and Signal Processing – III. Signal Processing 2 2002 ICFA Instrumentation School, Morelia, Mexico

Helmuth Spieler LBNL The linearity of an ADC can depend on the input pulse shape and duration, due to bandwidth limitations in the circuitry.

The differential non-linearity shown above was measured with a 400 ns wide input pulse.

Increasing the pulse width to 3 µs improved the result significantly:

4. Conversion Time

During the acquisition of a signal the system cannot accept a subsequent signal ("dead time")

Dead Time =

signal acquisition time	\rightarrow	time-to-peak + const.
+ conversion time	\rightarrow	can depend on pulse height
+ readout time to memory	\rightarrow	depends on speed of data transmission and buffer memory access - can be large in computer- based systems

Dead time affects measurements of yields or reaction crosssections. Unless the event rate << 1/(dead time), it is necessary to measure the dead time, e.g. with a reference pulser fed simultaneously into the spectrum.

The total number of reference pulses issued during the measurement is determiend by a scaler and compared with the number of pulses recorded in the spectrum.

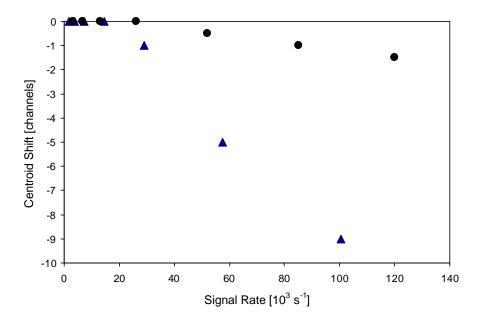
Does a pulse-height dependent dead time mean that the correction is a function of pulse height?

Usually not. If events in different part of the spectrum are not correlated in time, i.e. random, they are all subject to the same average dead time (although this average will depend on the spectral distribution).

 Caution with correlated events! Example: Decay chains, where lifetime is < dead time. The daughter decay will be lost systematically. 5. Count Rate Effects

Problems are usually due to internal baseline shifts with event rate or undershoots following a pulse.

If signals occur at constant intervals, the effect of an undershoot will always be the same.


However, in a random sequence of pulses, the effect will vary from pulse to pulse.

spectral broadening

Baseline shifts tend to manifest themselves as a systematic shift in centroid position with event rate.

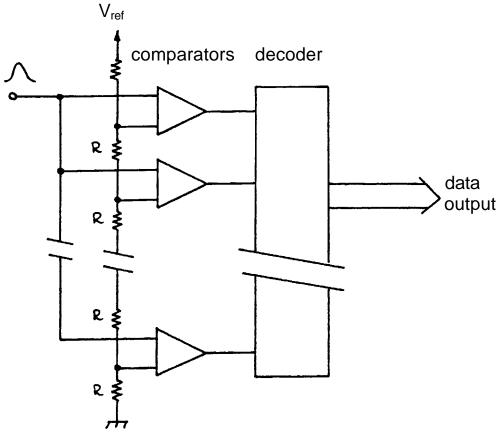
Centroid shifts for two 13 bit ADCs vs. random rate:

6. Stability

Stability vs. temperature is usually adequate with modern electronics in a laboratory environment.

- Note that temperature changes within a module are typically much smaller than ambient.
 - However: Highly precise or long-term measurements require spectrum stabilization to compensate for changes in gain and baseline of the overall system.
 - Technique: Using precision pulsers place a reference peak at both the low and high end of the spectrum.

 $(Pk. Pos. 2) - (Pk. Pos. 1) \rightarrow Gain, ... then$


 $(\mathsf{Pk.\ Pos.\ 1})\ or\ (\mathsf{Pk.\ Pos.\ 2})\ \rightarrow \qquad \mathsf{Offset}$

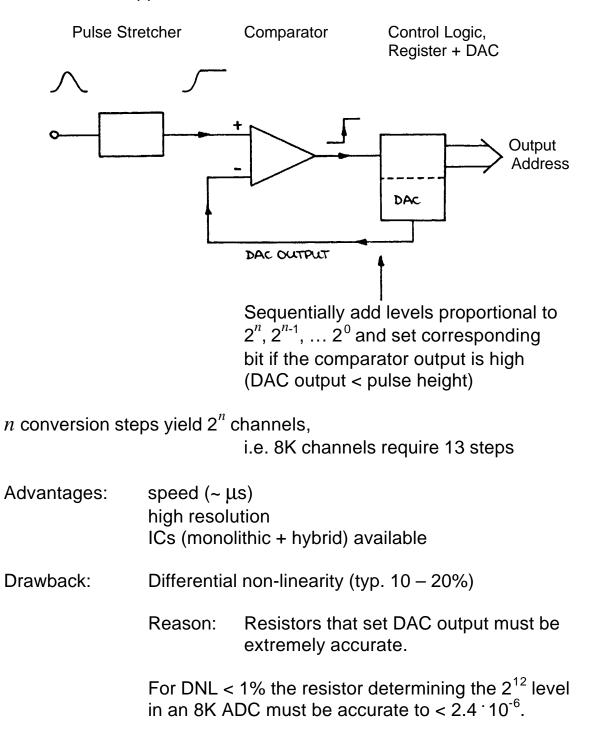
Traditional Implementation: Hardware, spectrum stabilizer module

Today, it is more convenient to determine the corrections in software. These can be applied to calibration corrections or used to derive an electrical signal that is applied to the hardware (simplest and best in the ADC).

Analog to Digital Conversion Techniques

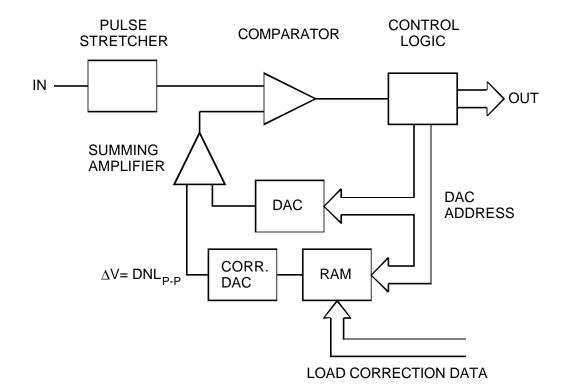
1. Flash ADC

The input signal is applied to n comparators in parallel. The switching thresholds are set by a resistor chain, such that the voltage difference between individual taps is equal to the desired measurement resolution.


 2^{n} comparators for *n* bits (8 bit resolution requires 256 comparators)

Feasible in monolithic ICs since the absolute value of the resistors in the reference divider chain is not critical, only the relative matching.

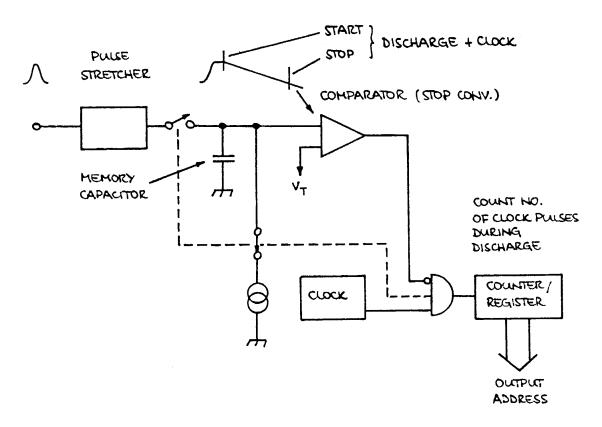
Advantage:	short conversion time (<10 ns available)
Drawbacks:	limited accuracy (many comparators)
	power consumption
	Differential non-linearity ~ 1%
	High input capacitance (speed is often limited by the
	analog driver feeding the input)


Helmuth Spieler LBNL

2. Successive Approximation ADC

DNL can be corrected by various techniques:

- averaging over many channel profiles for a given pulse amplitude ("sliding scale" or "Gatti principle")
- correction DAC ("brute force" application of IC technology)


The primary DAC output is adjusted by the output of a correction DAC to reduce differential non-linearity.

Correction data are derived from a measurement of DNL. Corrections for each bit are loaded into the RAM, which acts as a look-up table to provide the appropriate value to the correction DAC for each bit of the main DAC.

The range of the correction DAC must exceed the peak-to-peak differential non-linearity.

If the correction DAC has N bits, the maximum DNL is reduced by 1/ 2 $^{(N-1)}$ (if deviations are symmetrical).

3. Wilkinson ADC

The peak signal amplitude is acquired by a pulse stretcher and transferred to a memory capacitor. Then, simultaneously,

- 1. the capacitor is disconnected from the stretcher,
- 2. a current source is switched to linearly discharge the capacitor,
- 3. a counter is enabled to determine the number of clock pulses until the voltage on the capacitor reaches the baseline.

Advantage:	excellent differential linearity (continuous conversion process)
Drawbacks:	slow – conversion time = $n \cdot T_{clock}$ (n = channel number \propto pulse height) T_{clock} = 10 ns $\rightarrow T_{conv}$ = 82 µs for 13 bits
	Clock frequencies of 100 MHz typical, but >400 MHz possible with excellent performance

"Standard" technique for high-resolution spectroscopy.

Hybrid Analog-to-Digital Converters

Conversion techniques can be combined to obtain high resolution and short conversion time.

1. Flash + Successive Approximation or Flash + Wilkinson (Ramp Run-Down)

Utilize fast flash ADC for coarse conversion (*e.g.* 8 out of 13 bits)

Successive approximation or Wilkinson converter to provide fine resolution. Limited range, so short conversion time: 256 ch with 100 MHz clock \Rightarrow 2.6 µs

Results: 13 bit conversion in < 4 μ s with excellent integral and differential linearity

2. Flash ADCs with Sub-Ranging

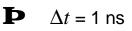
Not all applications require constant absolute resolution over the full range. Sometimes only *relative* resolution must be maintained, especially in systems with a very large dynamic range.

Precision binary divider at input to determine coarse range + fast flash ADC for fine digitization.

Example: Fast digitizer that fits in phototube base. Designed at FNAL.

17 to 18 bit dynamic rangeDigital floating point output (4 bit exponent, 8+1 bit mantissa)16 ns conversion time

Time Digitizers


1. Counter

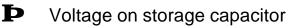
Simplest arrangement.

Count clock pulses between start and stop.

Limitation: Speed of counter

Current technology limits speed of counter system to about 1 GHz

Multi-hit capability

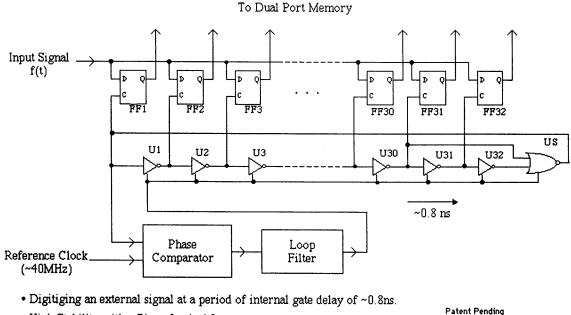

2. Analog Ramp

Commonly used in high-resolution digitizers ($\Delta t = 10 \text{ ps}$)

Principle: charge capacitor through switchable current source

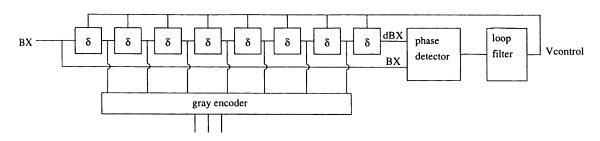
Start pulse: turn on current source

Stop pulse: turn off current source



Use Wilkinson ADC with smaller discharge current to digitize voltage.

Drawbacks: No multi-hit capability Deadtime

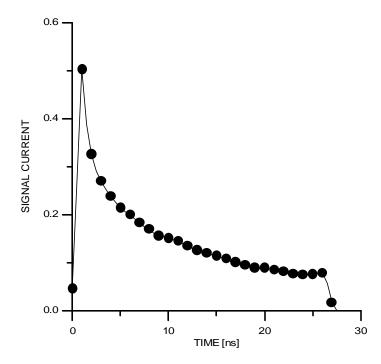

3. Digitizers with Clock Interpolation

Most experiments in HEP require multi-hit capability, no deadtime Commonly used technique for time digitization (Y. Arai, KEK)

- High Stability with a Phase Locked Loop.
- Long time range (>3 us) & No deadtime by a Dual Port Memory.
- High precision, High Density & Low Cost LSI.
- Clock period interpolated by inverter delays (U1, U2, ...). Delay can be fine-tuned by adjusting operating point of inverters.

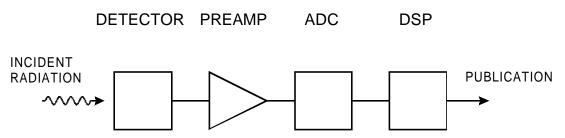
Delays stabilized by delay-locked loop

Devices with 250 ps resolution fabricated and tested.


see Y. Arai et al., IEEE Trans. Nucl. Sci. **NS-45/3** (1998) 735-739 and references therein.

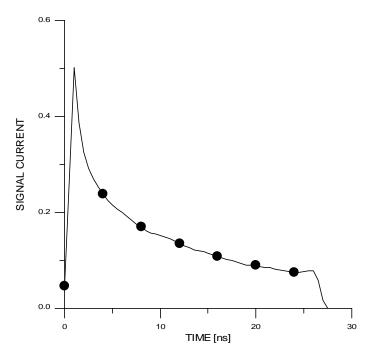
S63-067314 (JP)
 H3-133169 (JP)

H6~69507 (JP)
95300652.5 (EU)


2. Digital Signal Processing

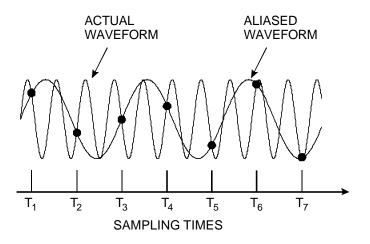
Sample detector signal with fast digitizer to reconstruct pulse:

Then use digital signal processor to perform mathematical operations for desired pulse shaping.


DSP allows great flexibility in implementing filtering functions

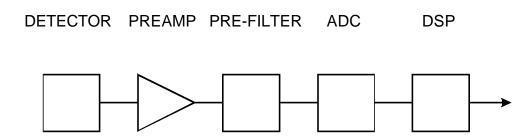
However: increased circuit complexity increased demands on ADC,

compared to traditional shaping.


Important to choose sample interval sufficiently small to capture pulse structure.

Sampling interval of 4 ns misses initial peak.

ADC must be capable of digitizing at more than twice the rate of the highest frequency component in the signal (Nyquist criterion).


With too low a sampling rate high frequency components will be "aliased" to lower frequencies:

Applies to any form of sampling (time waveform, image, ...)

Front-End Electronics and Signal Processing – III. Signal Processing 2 2002 ICFA Instrumentation School, Morelia, Mexico Helmuth Spieler LBNL

- Dynamic range requirements for ADC may be more severe than in analog filtered system (depending on pulse shape and pre-filter).
- Digitization introduces additional noise ("quantization noise")

If one bit corresponds to an amplitude interval $\Delta,$ the quantization noise

$$\boldsymbol{s}_{v}^{2} = \int_{-\Delta/2}^{\Delta/2} \frac{v^{2}}{\Delta} dv = \frac{\Delta^{2}}{12}$$

(differential non-linearity introduces quasi-random noise)

• Electronics preceding ADC and front-end of ADC must exhibit same precision as analog system, i.e.

baseline and other pulse-to-pulse amplitude fluctuations less than order $Q_n/10$, i.e. typically 10^{-4} in high-resolution systems.

For 10 V FS at the ADC input in a high-resolution gamma-ray detector system, this corresponds to < 1 mV.

D ADC must provide high performance at short conversion times

Today this is technically feasible for some applications, e.g. detectors with moderate to long collection times (γ and x-ray detectors).

Systems commercially available.

Benefits of digital signal processing:

- Flexibility in implementing filter functions
- Filters possible that are impractical in hardware
- Simple to change filter parameters
- Tail cancellation and pile-up rejection easily incorporated
- Adaptive filtering can be used to compensate for pulse shape variations.

Where is digital signal processing appropriate?

- Systems highly optimized for
 - Resolution
 - High counting rates
- Variable detector pulse shapes

Where is analog signal processing best (most efficient)?

- Fast shaping
- Systems not sensitive to pulse shape (fixed shaper constants)
- High density systems that require
 - small circuit area
 - low power

Both types of systems require careful analog design.

Progress in fast ADCs (precision, reduced power) will expand range of DSP applications