VI. Detector Systems – Conflicts and Compromises

1. Conflicts	2
2. CDF Vertex Detector Upgrade	3
3 BaBar Silicon Vertex Tracker	9
Development of a Tracker Concept at the LHC	17
Environment and Requirements	17
Layout	24
Strip Readout Architecture	29
Required signal-to-noise ratio	30
Prototype results	34
Two-Dimensional Detectors	38
ATLAS Pixel System	40
Advantages of pixels at LHC	46

VI. Detector Systems – Conflicts and Compromises

1. Conflicts

Custom integrated circuits essential for vertex detectors in HEP.

Requirements

- 1. low mass to reduce scattering
- 2. low noise
- 3. fast response
- 4. low power
- 5. radiation tolerance

reduction in mass ⇒ thin detector

radiation tolerance \Rightarrow thin detector

thin detector \Rightarrow less signal \Rightarrow lower noise required

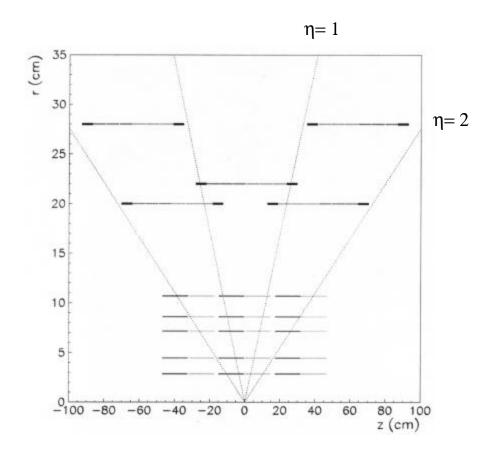
lower noise ⇒ increased power

fast response ⇒ increased power

increased power ⇒ more mass in cabling + cooling

immunity to external pickup \Rightarrow shielding \Rightarrow mass

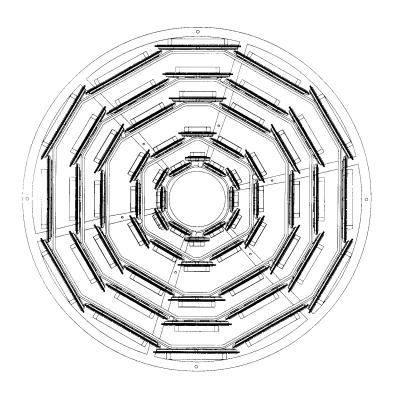
+ contain costs


How to deal with these conflicting requirements?

Some examples ...

2. CDF Vertex Detector Upgrade: SVX2

Expand coverage of existing vertex detector

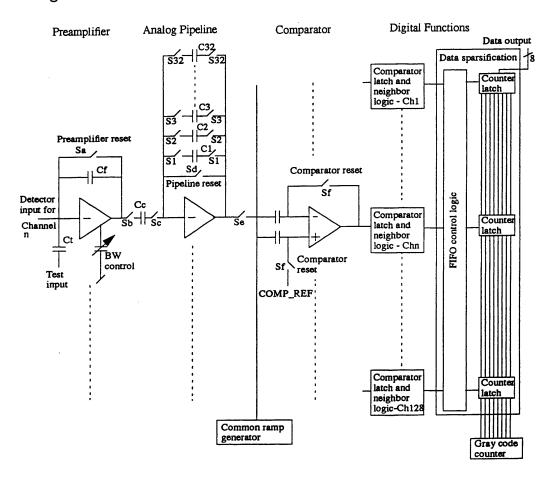

a) side view (z = beam axis)

Inner 5 layers: SVX2

Outer 2 layers: ISL

b) Axial view of vertex detector

Property	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4
Radial distance (cm)	2.45	4.67	7.02	8.72	10.6
Stereo angle (degrees)	90	90	+1.2	90	-1.2
$r\phi/z$ readout channels	256/512	384/576	640/640	768/512	896/896
$r\phi/z$ readout chips	2/2	3/3	5/5	6/4	7/7
$r\phi/z$ strip pitch $(\mu { m m})$	60/141	62/125.5	60/60	60/141	65/65
Total width (mm)	17.14	25.59	40.30	47.86	60.17
Total length (mm)	74.3	74.3	74.3	74.3	74.3


Layers 0, 1 and 3 use 90° stereo angle, whereas layers 4 and 5 use 1.2° stereo angle to reduce ghosting.

Electronic Readout

SVX2 uses the SVX3 chip, which is a further development of the SVX2 chip used by $D\varnothing$.

Include on-chip digitization of analog signal
Threshold, calibration via on-chip DACs
All communication to and from chip via digital bus

Block diagram of SVX2

Wilkinson ADC integrated with pipeline + comparator, which is also used for sparsification. Adds 100 μ m to length and 300 μ W/ch power.

ADC clock runs at 106 MHz in experiment, tested to 400 MHz Total power: 3 mW/ch

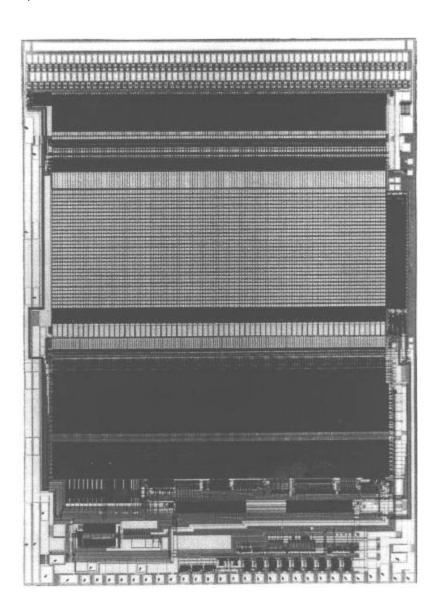
SVX2 die layout

Dimensions: 6.3 x 8.7 mm

0.8 μm, triple-metal rad-hard CMOS

Input Pads

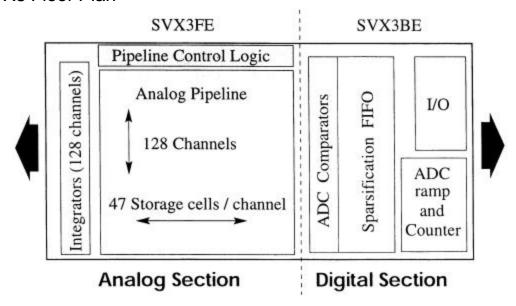
Preamplifiers


Analog Pipeline

ADC Comparator

Neighbor Logic

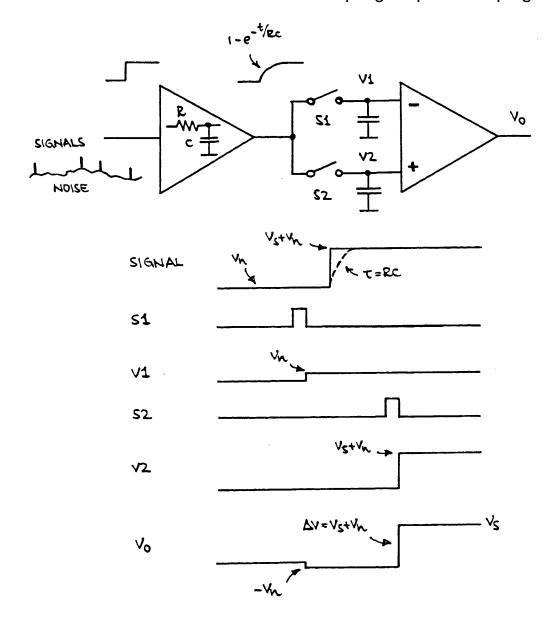
Sparsification + Readout


ADC Ramp + Counter, I/O

SVX2 (used by $D\varnothing$) is designed for sequential signal acquisition and readout.

SVX3 (used by CDF) allows concurrent read-write, i.e. signal acquisition and readout can proceed concurrently.

SVX3 Floor Plan


Analog section: 6.26 x 8.06 mm²
Digital section: 6.26 x 4.97 mm²

Combined in 1 chip: 6.26 x 12 mm²

Measured Noise: $Q_n = 500 \text{ el} + 60 \text{ el/pF rms}$

Both chips fabricated in rad-hard CMOS.

SVX2 and SVX3 utilize correlated double sampling for pulse shaping

Correlated double sampling requires prior knowledge of signal arrival.

OK for colliders if $\Delta T_{beam} > T_{shaper}$, but not for random signals.

High luminosity colliders (B Factories, LHC) have much shorter beam crossing intervals

⇒ continuous shaping required

3. BaBar Silicon Vertex Tracker

B mesons from Y(4S) production have low momentum.

Asymmetry in beam energies (9 GeV e⁻ on 3.1 GeV e⁺) used to provide boost ($\beta \gamma = 0.56$) that allows conventional vertex detectors to cope with short *B* meson lifetime.

Vertex detector must provide resolution in boost direction, i.e. parallel to beam axis, rather than in $r\varphi$.

Resolution requirement not stringent:

Less than 10% loss in precision in the asymmetry measurement if the separation of the B vertices is measured with a resolution of 1/2 he mean separation (250 µm at PEPII)

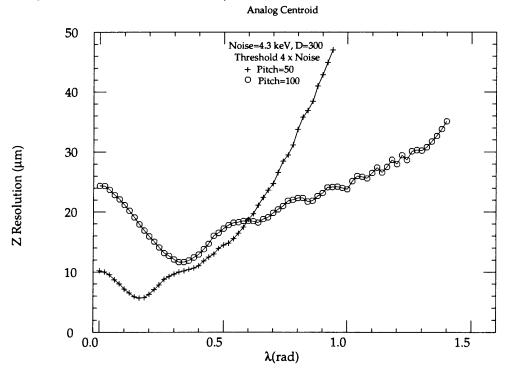
1 80 μm vertex resolution required for both CP eigenstates and tagging final states.

Resolution is multiple-scattering limited

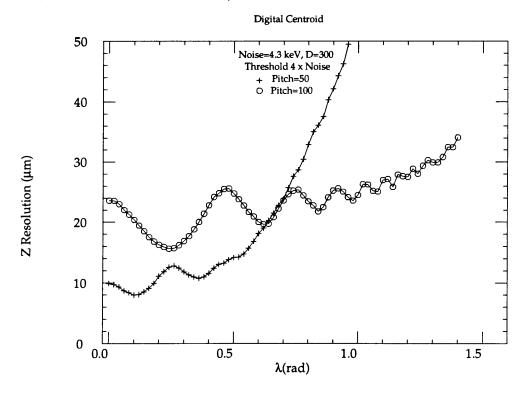
beam pipe: 0.6% X_0

Use crossed strips

z-strips for vertex resolution

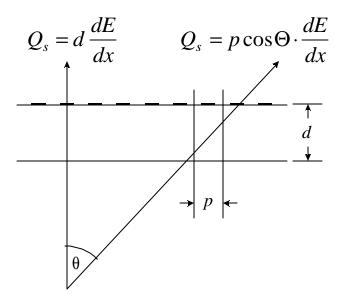

 $r\phi$ strips for pattern recognition

Measurement does not require utmost position resolution


P use binary readout

Position resolution for analog and binary readout vs dip angle λ .

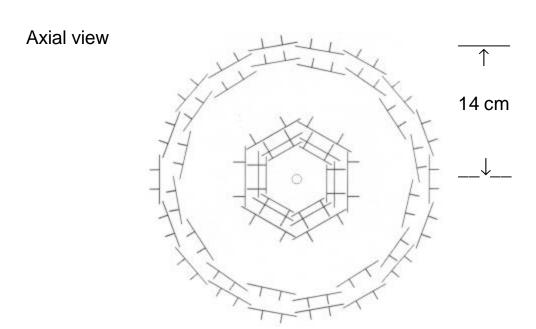
Analog readout (50 and 100 µm pitch)



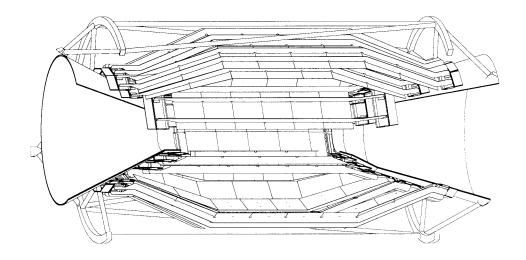
Binary readout (50 and 100 µm pitch)

Why does 100 µm pitch yield better resolution at large dip angles?

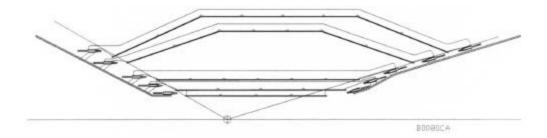
Signal in *z*-strips degrades at large dip angles



Change strip pitch at $\lambda > 0.7$ radians


Furthermore

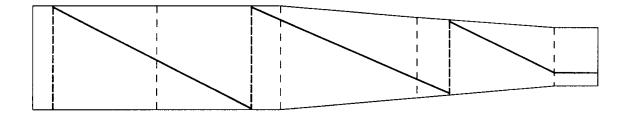
add coarse analog information (3 – 4 bits adequate)


Mechanical arrangement of detector

Side view

Outer layers use "lampshade" geometry instead of disks

Electronics mounted outside of active region (connected to detectors by kapton cables)


long strips (high capacitance) in outer layers

Layer	Fanout	Length	Number of Readout		Typical Pitch at		Number
	Type	(cm)	Strips	Channels	$Input(\mu m)$	Output (µm)	of Circuits
1	z, F+B	12.5	950	768	100	50	12
	ϕ , F+B	3.0	768	768	50	50	12
2	z, F+B	14.5	1150	1024	100	50	12
	ϕ , F+B	3.0	960	1024	50	50	12
			1000	1000	100		
3	z, F+B	15.6	1360	1280	100	50	12
	ϕ , F+B	2.0	1280	1280	50	50	12
	-	10 =	225	F10	200	* 0	
4a	$z, \frac{F}{F}$	19.7	885	512	200	50	8
	z, B	24.3	1115	512	200	50	8
	ϕ , F+B	2.0	512	512	65	50	16
	ъ.	00.6	000	F10	200	~ 0	0
4b	z,F	20.6	930	512	200	50 50	8
	z,B	24.2	1160	512	200	50	8
	ϕ , F+B	2.0	512	512	65	50	16
5a	z, F	25.2	1160	512	200	50	9
Ja					200		9
	z, B	25.1	1205	512		50 50	
	ϕ , F+B	2.0	512	512	65	50	18
5b	z, F+B	26.1	1205	512	200	50	18
	ϕ , F+B	2.0	512	512	65	50 50	18

z-strips are connected at ends, to avoid cables in middle of detector.

Kapton connecting cables that connect multiple detector segments (use $r\phi$ resolution to disentangle ambiguities)

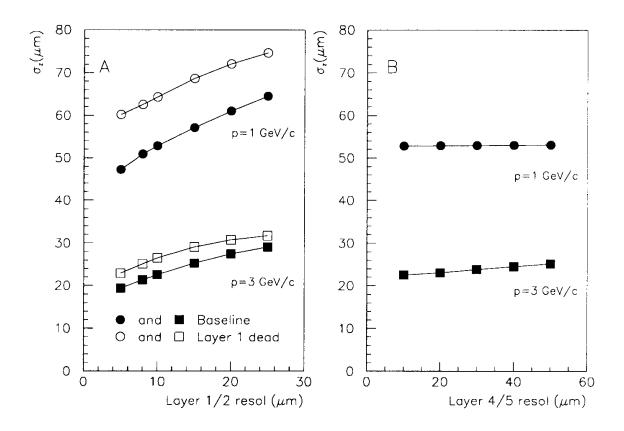
Connections made along diagonals:

AToM – Readout IC for BaBar Vertex Detector (LBNL, Pavia, UCSC)

AToM Block Diagram

Preamplifier with continuous reset

CR-RC² shaper with selectable shaping times (100, 200 and 400 ns)


Outer layers of tracker have longer strips (higher capacitance) than inner layers. Lower occupancy allows use of longer shaping time to maintain electronic noise.

Coarse digitization via Time-Over-Threshold (analog information for position interpolation only requires 3 – 4 bit resolution)

Measured noise (pre-production run) for 3 shaping times

100 ns: Q_n = 350 el + 42 el/pF 200 ns: Q_n = 333 el + 35 el/pF 400 ns: Q_n = 306 el + 28 el/pF

Simulated vertex resolution

4. Development of a Tracker Concept at the LHC

ATLAS Tracking detector for the LHC

LHC: Colliding proton beams

7 TeV on 7 TeV (14 TeV center of mass)

Luminosity: 10³⁴ cm⁻²s⁻¹

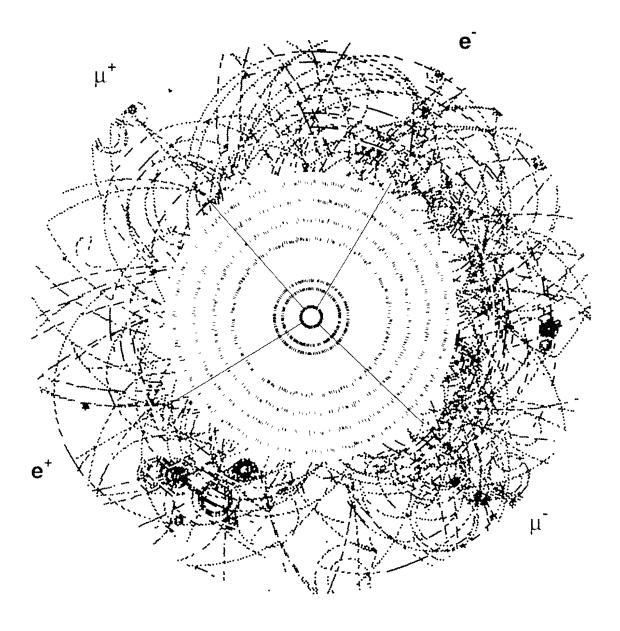
Bunch crossing frequency: 40 MHz Interactions per bunch crossing: 23

Charged particles per unit of rapidity: 150

$$\Rightarrow \text{ hit rate } n' = \frac{2 \cdot 10^9}{r_1^2} \left[\text{cm}^{-2} \text{s}^{-1} \right]$$

where r_{\perp} = distance from beam axis

If the detector subtends ± 2.5 units of rapidity, the total hit rate in the detector is 3.10^{10} s⁻¹


Hit rate at r_{\perp} = 14 cm: ~ 10⁷ cm⁻²s⁻¹

Overall detector to include

- 1. Vertexing for B-tagging
- 2. Precision tracking in 2T magnetic field
- 3. Calorimetry (EM + hadronic)
- 4. Muon detection

"Typical Event" - Axial View

$$H \,\rightarrow\, ZZ^* \,\rightarrow\, \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \,\,(m_H = 130 \; GeV)$$

Appears worse than it is – tracks spread azimuthally, but high track density at forward angles.

Radiation Damage

Two sources of particles

- a) beam collisions
- b) neutron albedo from calorimeter

Fluences per year (equivalent 1 MeV neutrons)

$$r \sim 10 \text{ cm}$$
 typ. $5.10^{13} \text{ cm}^{-2}$

$$r \sim 30 \text{ cm}$$
 typ. $2.10^{13} \text{ cm}^{-2}$

Ionizing Dose per year

$$r \sim 30 \text{ cm}$$
 4 kGy (400 krad)

In reality, complex maps are required of the radiation flux, which is dependent on local material distribution.

Impact parameter resolution

$$\mathbf{S}_{b}^{2} \approx \left(\frac{\mathbf{S}_{1}r_{2}}{r_{2}-r_{1}}\right)^{2} + \left(\frac{\mathbf{S}_{2}r_{1}}{r_{2}-r_{1}}\right)^{2} = \left(\frac{\mathbf{S}_{1}}{1-r_{1}/r_{2}}\right)^{2} + \left(\frac{\mathbf{S}_{2}}{r_{2}/r_{1}-1}\right)^{2}$$

- ⇒ a) the ratio of outer to inner radius should be large
 - b) the resolution of the inner layer S_1 sets a lower bound on the overall resolution
 - c) the acceptable resolution of the outer layer scales with r_2/r_1 .

If the layers have equal resolution $\sigma_1 = \sigma_2 = \sigma$

$$\left(\frac{\mathbf{s}_b}{\mathbf{s}}\right)^2 \approx \left(\frac{1}{1 - r_1 / r_2}\right)^2 + \left(\frac{1}{r_2 / r_1 - 1}\right)^2$$

The geometrical impact parameter resolution is determined by the ratio of the outer to inner radius.

The obtainable impact parameter resolution decreases rapidly from

$$\mathbf{s}_b/\mathbf{s} = 7.8$$
 at $r_2/r_1 = 1.2$ to $\mathbf{s}_b/\mathbf{s} = 2.2$ at $r_2/r_1 = 2$ and $\mathbf{s}_b/\mathbf{s} < 1.3$ at $r_2/r_1 > 5$.

For $\mathbf{s} = 10 \ \mu \text{m}$ and $r_2/r_1 \approx 2$: $\mathbf{s}_b \approx 20 \ \mu \text{m}$.

Similar conclusions apply for the momentum resolution.

The inner radius is limited by the beam pipe, typically r=5 cm.

At the high luminosity of the LHC radiation damage is a serious concern, which tends to drive the inner layer to greater radii.

Amount of material and its distribution is critical:

Small angle scattering

$$\Theta_{rms} = \frac{0.0136 \left[GeV / c \right]}{p_{\perp}} \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \cdot \ln \left(\frac{x}{X_0} \right) \right]$$

Assume a Be beam pipe of x=1 mm thickness and R=5 cm radius.

The radiation length of Be is X_0 = 35.3 cm, so that x/X_0 = 2.8·10⁻³ and at p_{\perp} = 1 GeV/c the scattering angle $\Theta_{\rm rms}$ = 0.56 mrad.

This corresponds to $s_b = R\Theta_{\rm rms} = 28 \ \mu \text{m}$, which exceeds the impact parameter resolution.

Scattering originating at small radii is more serious, so it is important to limit material especially at small radii.

For comparison: 300 μm of Si \rightarrow 0.3% X_0

How to cope with ...

- High total event rate
 - a) fast electronics high power required for both noise and speed
 - b) segmentation reduce rate per detector element

for example, at r=30 cm the hit rate in an area of 5.10^{-2} cm² is about 10^{5} s⁻¹, corresponding to an average time between hits of 10 μ s.

- **P** longer shaping time allowable
- **P** lower power for given noise level
- Large number of events per crossing
 - a) fast electronics (high power)
 - b) segmentation if a detector element is sufficiently small, the probability of two tracks passing through is negligible
 - c) single-bunch timing reduce confusion by assigning hits to specific crossing times
- Segmentation is an efficient tool to cope with high rates.

With careful design, power requirements don't increase.

- **P** Fine segmentation feasible with semiconductor detectors
 - "μm-scale" patterning of detectors
 - monolithically integrated electronics mounted locally

Large number of front-end channels requires simple circuitry
Single bunch timing **P** collection times <25 ns

Radiation damage is a critical problem in semiconductor detectors:

a) detector leakage current

$$I_R = I_{R0} + \mathbf{a}\Phi Ad$$

P shot noise

$$Q_{ni}^2 = 2q_e I_R F_i T_S$$

self-heating of detector

reduce current by cooling

$$I_R(T) \propto T^2 e^{-E/2k_BT}$$

reduce shaping time reduce area of detector element

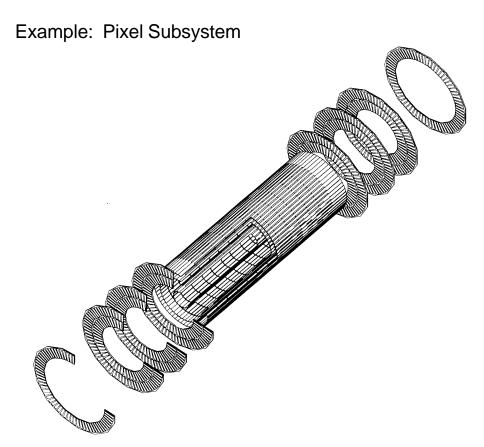
- b) Increase in depletion voltage
 - **P** thin detector
 - **P** allow for operation below full depletion
 - less signal
 Requires lower noise to maintain minimum S/N
 - decrease area of detector element (capacitance)

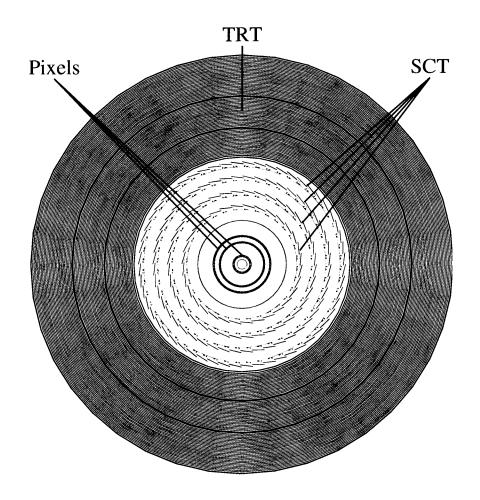
Note: gas-proportional chambers are also subject to radiation damage

plasma-assisted polymerization in avalanche region

P deposits on electrodes

Use of a highly-developed technology, i.e. Si rather than "exotic" materials, provides performance reserves and design flexibility to cope with radiation damage.


Layout


Full coverage provided by a combination of barrel and disk layers.

Coverage provided by

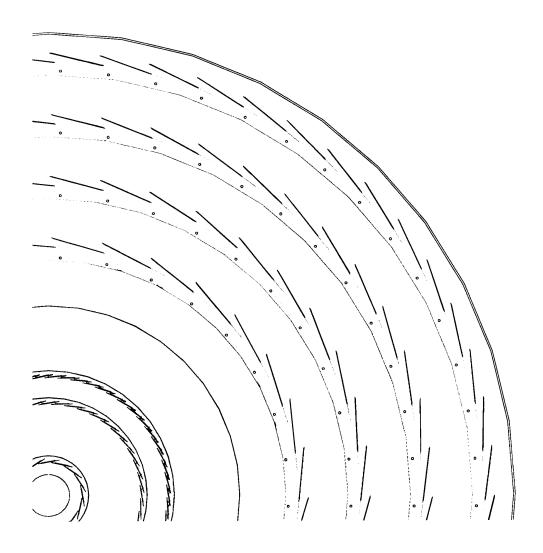
- a) barrel in central region
- b) disks in forward regions

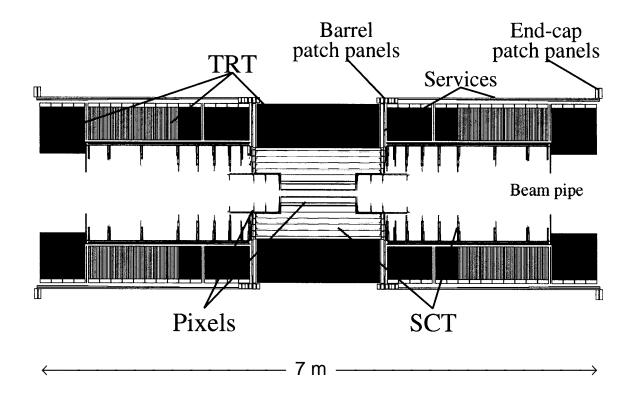
to provide maximum coverage with minimum Si area.

Pixels at small radii (4, 11, 14 cm) to cope with

- high event rate (2D non-projective structure)
- radiation damage
 small capacitance ~ 100 fF low noise Q_n» 100 el

Strips at larger radii (30, 37, 45, 52 cm) - minimize material, cost


Pixels and strips provide primary pattern recognition capability


Straw drift chambers at outer radius (56 – 107 cm)

~70 layers yield 40 space points at large *R* and augment pattern recognition by continuous tracking (least expensive solution)

Detector modules arranged in cylindrical shells (barrels).

Modules will be "shingled" to provide full coverage and overlap to facilitate relative position calibration.

Strip modules use back-to-back single-sided detectors with small-angle stereo (40 mr) to provide z-resolution with negligible "ghosting".

Resolution provided by 3 detector types in barrel

	$R\mathbf{f}$	z
Pixels	12 μm	66 µm
Strips	16 μm	580 μm
Straws	170 μm	

Segmentation **L** Large number of data channels

Total number of channels and area

Pixels 1.4 x 10⁸ channels 2.3 m²

Strips 6.2 x 10⁶ channels 61 m²

Straws 4.2×10^5 channels

But, ...

only a small fraction of these channels are struck in a given crossing

Occupancy for pixels, 50 μm x 300 μm:

4 cm Pixel Layer 4.4 x 10⁻⁴

11 cm Pixel Layer 0.6 x 10⁻⁴

Occupancy for strip electrodes with 80 µm pitch, 12 cm length:

30 cm Strip Layer 6.1×10^{-3}

52 cm Strip Layer 3.4 x 10⁻³

Utilize local sparsification – i.e. on-chip circuitry that recognizes the presence of a hit and only reads out those channels that are struck.

P data readout rate depends on hit rate, not on segmentation

First implemented in SVX chip

S.A. Kleinfelder, W.C. Carrithers, R.P. Ely, C. Haber, F. Kirsten, and H.G. Spieler, A Flexible 128 Channel Silicon Strip Detector Instrumentation Integrated Circuit with Sparse Data Readout, IEEE Trans. Nucl. Sci. **NS-35** (1988) 171

Readout

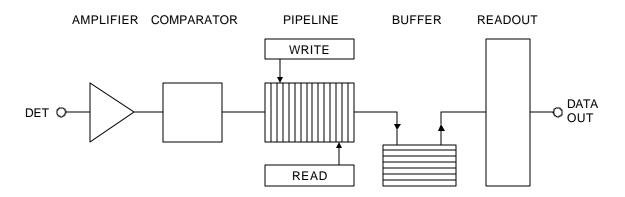
Strips + Pixels: many channels

Essential to minimize

power

material (chip size, power cables, readout lines)

cost (chip size)


failure rate (use simple, well controlled circuitry)

Goal is to obtain adequate position resolution, rather than the best possible

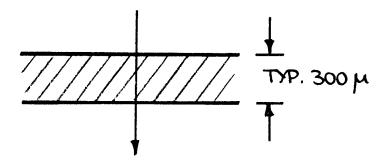
P Binary Readout

detect only presence of hits identify beam crossing

Architecture of ATLAS strip readout

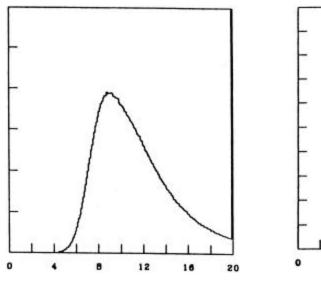
Unlike LEP detectors ...

Crossing frequency >> readout rate

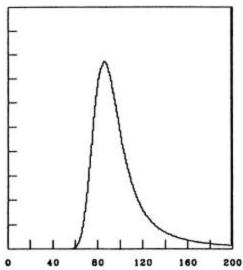

data readout must proceed simultaneously with signal detection (equivalent to DC beam)

Single 128-channel BiCMOS chip (BJT + CMOS on same chip) in radiation-hard technology.

Required Signal-to-Noise Ratio

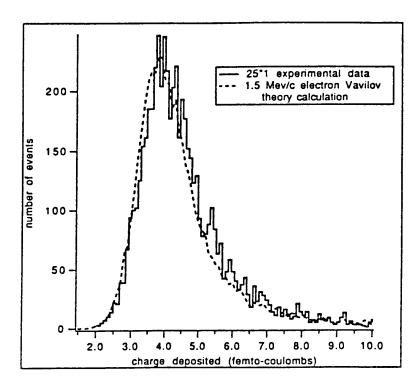

Acceptable noise level established by signal level and noise occupancy

1. Signal Level



For minimum ionizing particles: Q_s = 22000 el (3.5 fC)

Signals vary event-by-event according to Landau distribution (calculation by G. Lynch)


Si: 40 µm thick

 $Si: 300 \, \mu m \, thick$

Width of distribution decreases with increasing energy loss.

Measured Landau distribution in a 300 μm thick Si detector (Wood et al., Univ. Oklahoma)

The Landau distribution peaks at the most probable energy loss Q_0 and extends down to about 0.5 Q_0 for 99% efficiency.

Assume that the minimum energy is f_LQ_0 .

Tracks passing between two strips will deposit charge on both strips. If the fraction of the signal to be detected is f_{sh} , the circuit must be sensitive signal as low as

$$Q_{\min} = f_{sh} f_L Q_0$$

2. Threshold Setting

It would be desirable to set the threshold much lower than Q_{min} , to be insensitive to threshold variations across the chip.

A lower limit is set by the need to suppress the noise rate to an acceptable level that still allows efficient pattern recognition.

As discussed previously, the threshold-to-noise ratio required for a desired noise rate f_n in a system with shaping time T_S is

$$\frac{Q_T}{Q_n} = \sqrt{-2\log(4\sqrt{3}f_n T_S)}$$

Expressed in terms of occupancy P_n in a time interval Δt

$$\frac{Q_T}{Q_n} = \sqrt{-2\log\left(4\sqrt{3}_n T_S \frac{P_n}{\Delta t}\right)}$$

In the strip system the average hit occupancy is about 5×10^{-3} in a time interval of 25 ns. If we allow an occupancy of 10^{-3} at a shaping time of 20 ns, this corresponds to

$$\frac{Q_T}{Q_n} = 3.2$$

The threshold uniformity is not perfect. The relevant measure is the threshold uniformity referred to the noise level. For a threshold variation ΔQ_T , the required threshold-to-noise ratio becomes

$$\frac{Q_T}{Q_n} = \sqrt{-2\log\left(4\sqrt{3}_n T_S \frac{P_n}{\Delta t}\right)} + \frac{\Delta Q_T}{Q_n}$$

If $\Delta Q_T/Q_n$ = 0.5, the required threshold-to-noise ratio becomes Q_T/Q_n = 3.7 .

To maintain good timing, the signal must be above threshold by at least Q_n , so $Q_T/Q_n > 4.7$.

Combining the conditions for the threshold

$$\left(\frac{Q_T}{Q_n}\right)_{\min} Q_n \le Q_{\min}$$

and signal

$$Q_{\min} = f_{sh} f_L Q_0$$

yields the required noise level

$$Q_n \le \frac{f_{sh} f_L Q_0}{\left(Q_T / Q_n\right)_{\min}}$$

If charge sharing is negligible $f_{sh}=$ 1, so with $f_L=$ 0.5, $Q_0=$ 3.5 fC and $(Q_T/Q_n)_{\min}=$ 4.7

$$Q_n \le 0.37 \, \text{fC} \, \text{or} \, Q_n \le 2300 \, el$$

If the system is to operate with optimum position resolution, i.e. equal probability of 1- and 2-hit clusters, then $f_{sh} = 0.5$ and

$$Q_n \le 0.19 \, \text{fC} \, \text{ or } Q_n \le 1150 \, el$$

ATLAS requires $Q_n \le 1500 \ el$.

Prototype Results

ATLAS has adopted a single chip implementation (ABCD chip).

- 128 ch, bondable to 50 μm strip pitch
- bipolar transistor technology, rad-hard
 minimum noise independent of shaping time
- peaking time: ~20 ns (equivalent CR-RC⁴)
- double-pulse resolution (4 fC 4 fC): 50 ns
- noise, timing: following slides
- 1.3 to 1.8 mW/ch (current in input transistor adjustable)
- on-chip DACs to control threshold + operating point
- Trim DACs on each channel to reduce channel-to-channel gain and threshold non-uniformity
- Readout allows defective chips to be bypassed
- Optical fiber readout with redundancy
- die size: 6.4 x 4.5 mm²

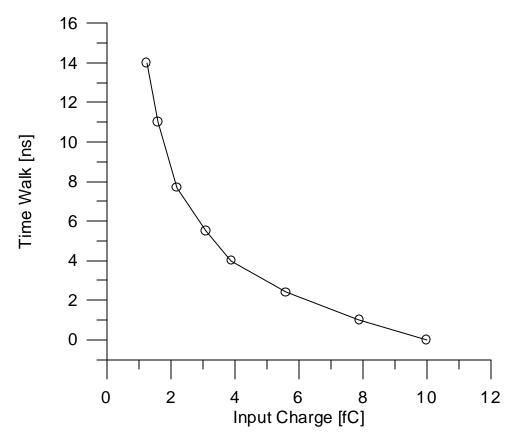
For illustration, the following slides show data from a previous prototype IC, the CAFE chip

This was part of an initial 2-chip implementation (BJT analog chip and CMOS digital chip)

CAFE Timing Performance

- 1. Chips from run 1 measured on test boards
 - irradiated to 10¹⁴ cm⁻² (MIP equiv)

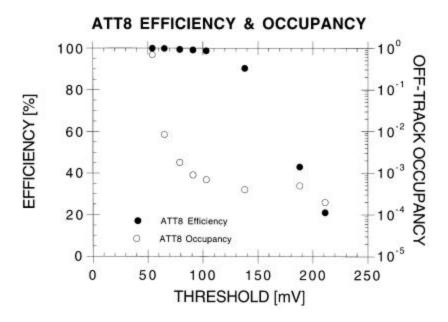
Time Walk 16 ns (1.25 - 10 fC) at 1 fC threshold

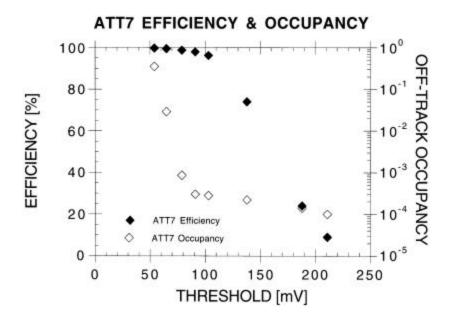

1.25 - 4 fC: 12 ns 4 fC - 10 fC: 4 ns

Jitter at 1.25 fC ≈ 4 ns FWHM

Total time diistribution (99% efficiency) confined within about 18 ns.

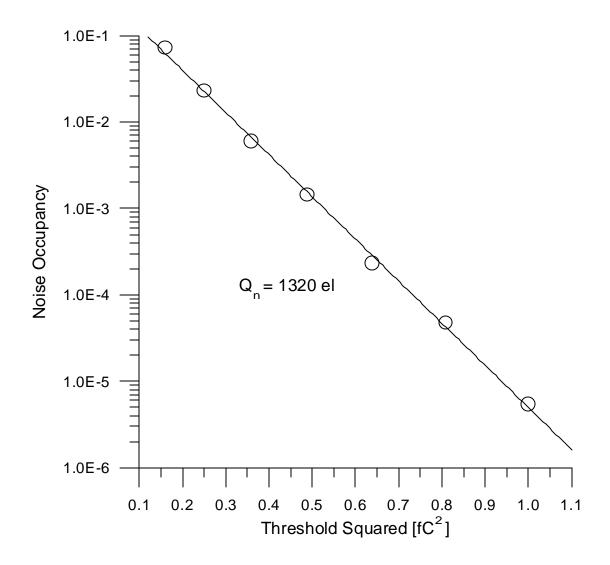
2. Chips from Run 2 measured on test boards (pre-rad)




Test Beam Data

Tracking Efficiency vs. Occupancy for Full-Length Modules

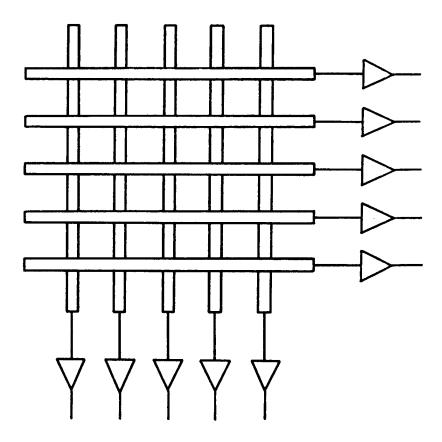
non-irradiated module



irradiated module ($\Phi = 10^{14} \text{ cm}^{-2}$)

Noise Occupancy vs. Threshold

Module with CAFE chip in test beam position at KEK



Baseline fluctuations, digital cross-talk

deviations from straight line plot (gaussian noise)

Two-Dimensional Detectors

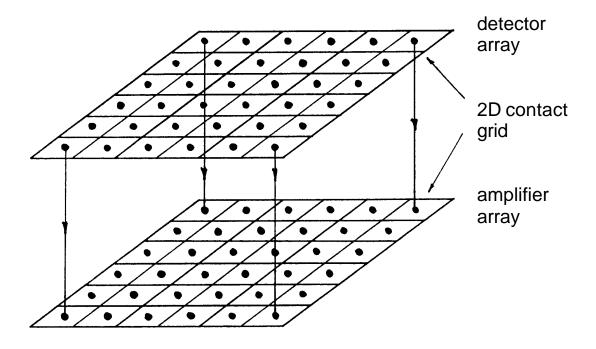
Example: Crossed strips on opposite sides of Si wafer

n readout channels **P** n^2 resolution elements

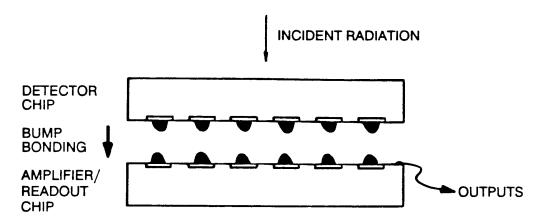
Problem: ambiguities with multiple hits

n hits in acceptance field p n x-coordinates n y-coordinates

 n^2 combinations of which n^2 - n are "ghosts"

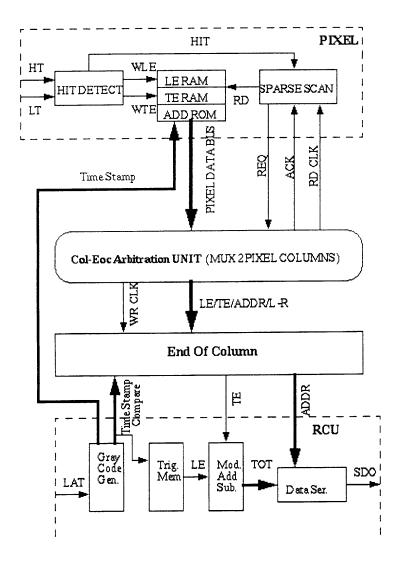

ATLAS strips reduce ambiguities by using small angle stereo (40 mrad).

Not sufficient at small radii – need non-projective 2D detector


Pixel Detectors with Random Access Readout

Amplifier per pixel

Address + signal lines read out individually addressed, i.e. single, pixels

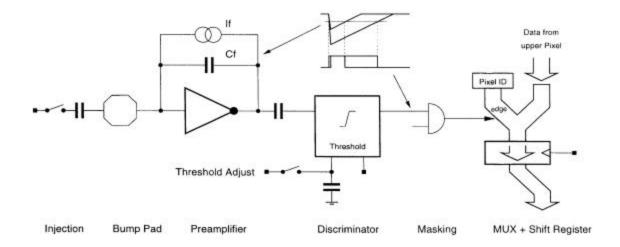


2D contact via "bump bonds"

ATLAS Pixel System

Fast Pixel Readout for ATLAS

Quiescent state: no clocks or switching in pixel array


When pixel is struck: pixel address is sent to column buffer at

chip periphery and time stamped

Receipt of trigger: check to see which addresses are in selected

time bin and selectively read out pixels.

Block Diagram of Pixel Cell

Linear discharge of preamplifier feedback capacitor provides linear time-over-threshold digitization for readout of analog information.

Pixel size: 50 μm x 300 μm

Power per pixel: $< 40 \mu W$

Final chip: 24 columns x 160 pixels (3840 pixels)

Module size: 16.4 x 60.4 mm²

16 front-end chips per module

61440 pixels per module

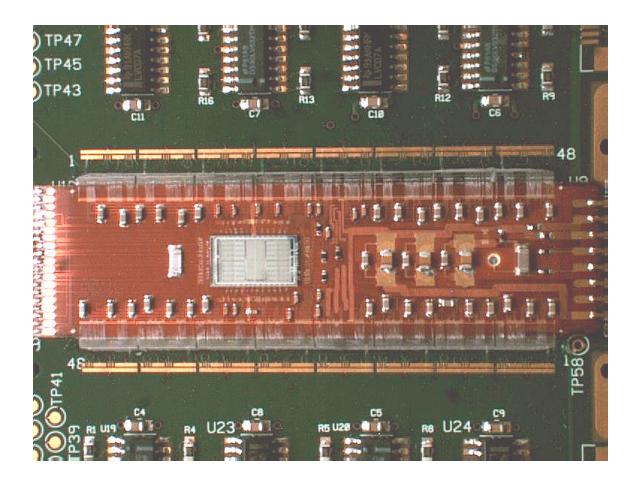
new chip in 0.25 μm CMOS

4.10⁶ transistors

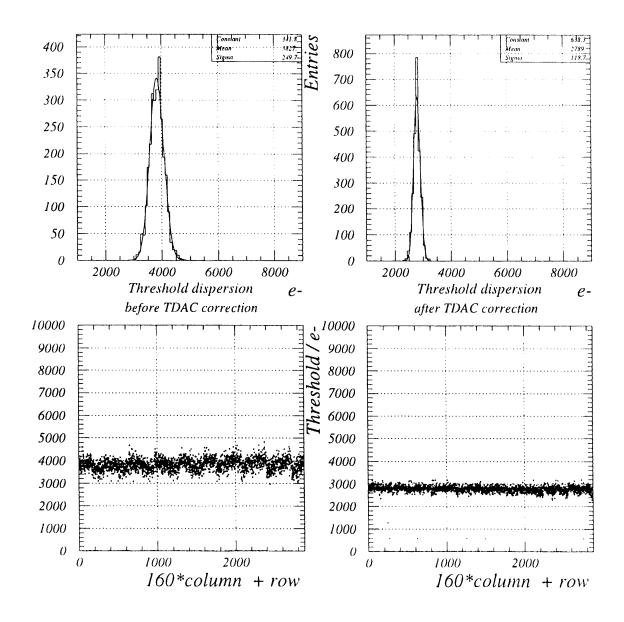
Detail of bump bonding with layout of single pixel

PARTICLE hybrid pixel DETECTOR CHIP detector is made of 3 basic elements: HIP CONTACTS BUMP SIGNAL OUT A matrix Si of diodes; A chip with a matrix of electronic ELECTRONIC CHIP channels matching the detection elements; A "bump bond" connection between the two; 50 μm

400 µm

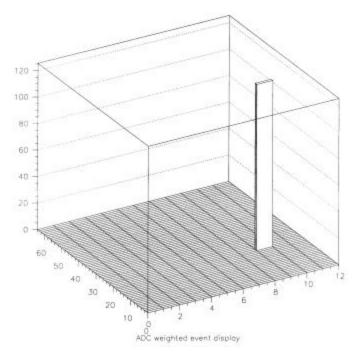

Chips have all control and output pads on one side, so that they can be butted together to form a 2 x 8 chip array

Chips are mounted on sensor, which also serves as an interconnect substrate.

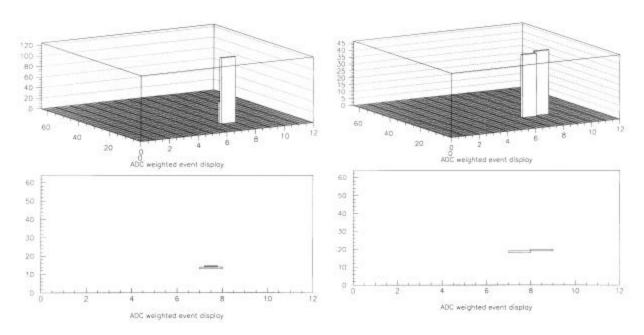

A kapton flex hybrid is mounted on the sensor and connected with wire-bonds.

The flex hybrid includes bypass capacitors, the output driver and connections to the readout bus.

Test module mounted on PC board for test



Thresholds are trimmed pixel by pixel to maintain uniformity after radiation damage (software, automated).



Test Beam Results

Track through single pixel

Charge sharing

Advantages of pixels at LHC

2D segmentation

Pattern recognition at small radii

Low capacitance

- **▶** high S/N
- allows degradation of both detector signal and electronic noise due to radiation damage

small detector elements

detector bias current per element still small after radiation damage

Drawback:

Engineering complexity order of magnitude greater than previous chips

Questions

What is the ultimate limit of radiation resistance?

detectors

oxygenation extends Si detector lifetime limits of Si? other materials? diamond, SiC? cryogenic operation?

electronics

CMOS beyond 100 Mrad?

0.25 mm CMOS demonstrated to >70 Mrad

cryogenic operation?